首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of dusty plasma structures has been experimentally investigated in a cylindrical dc discharge in axial magnetic fields up to 2500 G. The rotation of the dusty plasma structures about the discharge symmetry axis with a frequency depending on the magnetic field has been observed. When the field increases to 700 G, the displacement of dust particles from the axial region of the discharge to the periphery, along with the continuation of the rotation, has been observed. The kinetic temperatures of the dust particles, the diffusion coefficients, and the effective nonideality parameter have been determined for various magnetic fields. The explanation of the features in the behavior of the dust particles in the discharge in the magnetic field has been proposed on the basis of the analysis of ambipolar diffusion in the magnetized plasma. The maximum magnetic field at which the levitation of the dust particles in the discharge is possible has been estimated.  相似文献   

2.
In this work, we present the investigation of the formation features and internal structure of dust clouds created in plasma of glow discharge in the external magnetic field corresponding to a range of moderate and strong fields, at which the ion component is magnetized. The analysis of the plasma magnetization in the presence of dust components is carried out. We defined the values of magnetic induction at which the changes in dynamics of plasma particles in magnetic field in light inert gases are expected. The experimental setup was built in two versions. For the purpose of generating of magnetic field, the first setup was equipped with ordinary magnetic coils, and the second one included a superconducting solenoid. The discharge tubes, the main chambers where plasma was ignited and maintained in a glow discharge in lowered pressure, also have certain peculiarities, which we describe below. While using helium as a bulk gas, our study focused only on the dust trap in the region of narrowing discharge current. For neon, we used two traps: the striation trap and one just mentioned above placed in the narrowing of the discharge tube. As a result, the steady dust structures in a glow discharge under the magnetization of ions and electrons were obtained for the first time. Dust structures were rotated and tended to form a dust cluster and shell structure. A number of parameters of magnetization achieved in experiments were calculated.  相似文献   

3.
This paper reports on a test using laser Doppler anemometry of the hypothesis that the magnetomechanical effect involves rotation of the plasma of the positive gas-discharge column in an axial magnetic field. This was done by measuring the velocities of the dust macroparticles dropping in a vertical discharge tube. No rotation of the gas was revealed at a sensitivity of 40 cm/s. The rotation of dust particles suspended in striations and in the trap near the narrowed region of the discharge in a magnetic field was observed. The possible connection of this rotation with the magnetomechanical effect is discussed.  相似文献   

4.
In experiments on complex plasmas, afixed strata region in which the levitation of dust structures is observed is investigated using the method of probing by calibrated dust particles of different sizes in an applied magnetic field under elevated pressures. The measured azimuthal velocity of the probing particles corresponds to the action of the ion drag force for 4 μm-size particles and to the entrainment by the rotating gas owing to the electron vortex flow inside the strata for 1 μm-size particles. Extrapolation to pressures and magnetic fields in which the rotation inversion of dust structures is observed in experiments shows that the ion drag is the dominating force causing rotation with a negative projection of the angular velocity onto the magnetic induction.  相似文献   

5.
This study continues a cycle of works published in Optika i Spektroskopiya (Optics and Spectroscopy) on the magnetomechanical effect in a gas discharge. It is devoted to the hypothesis of the appearance of a torque acting on an object placed in a gas discharge in a magnetic field and arising due to the momentum transfer from the rotating neutral gas. The velocities of gas rotation required for the formation of the observed moment of forces are estimated. Measurements of the velocities performed using laser Doppler anemometry are analyzed. The method of observing dust structures in a magnetic field to reveal gas rotation is justified. Corresponding experiments with the use of the method of optical visualization for the observation of plasma-dust structures are conducted. The experimental dependence ω(r) obtained for a liquidlike structure is not consistent with the hypothesis of the transfer of rotation from the gas. Additional observations of dust plasma upon tilting of the discharge tube in the gravitational field are conducted. It is found that, in this case, the structure shifts from the central region of the stratum to the periphery and the rotation ceases. Neither the analysis nor the experiments performed in this study are consistent with the hypothesis of gas rotation in the magnetomechanical effect. The results of the experiments with dust structures are of independent interest for the physics of dust plasma.  相似文献   

6.

We have analyzed the modification of the texture of polymer particle surface in a dust plasma. Monodisperse spherical melamine formaldehyde particles were injected into the glow discharge plasma in neon. At a certain discharge current and gas pressure in the discharge tube, the particles were suspended in dust-plasma traps and experienced the action of the plasma of 5–25 min. Then, the particles were extracted and the collected material was studied using the scanning electron microscope. Among the results, a change in the diameter and roughness of the surface depending on the residence time of particles in the dust plasma was established. It was found that the absolute deviation of all points of the surface profile averaged over the evaluation length were in the nanometer range. The time of complete degradation of particles in the experimental conditions has been established.

  相似文献   

7.
Low-pressure gas discharge plasmas are known to be strongly affected by the presence of small dust particles. This issue plays a role in the investigations of dust particle-forming plasmas, where the dust-induced instabilities may affect the properties of synthesized dust particles. Also, gas discharges with large amounts of microparticles are used in microgravity experiments, where strongly coupled subsystems of charged microparticles represent particle-resolved models of liquids and solids. In this field, deep understanding of dust–plasma interactions is required to construct the discharge configurations which would be able to model the desired generic condensed matter physics as well as, in the interpretation of experiments, to distinguish the plasma phenomena from the generic condensed matter physics phenomena. In this review, we address only physical aspects of dust–plasma interactions, that is, we always imply constant chemical composition of the plasma as well as constant size of the dust particles. We also restrict the review to two discharge types: dc discharge and capacitively coupled rf discharge. We describe the experimental methods used in the investigations of dust–plasma interactions and show the approaches to numerical modelling of the gas discharge plasmas with large amounts of dust. Starting from the basic physical principles governing the dust–plasma interactions, we discuss the state-of-the-art understanding of such complicated, discharge-type-specific phenomena as dust-induced stratification and transverse instability in a dc discharge or void formation and heartbeat instability in an rf discharge.  相似文献   

8.
9.
Levitation of dust particles in the anode region of a dc glow discharge was observed for the first time. A dust cloud of several tens of particles formed at a distance of several millimeters above the central part of the anode. When the discharge parameters were varied, the shape of the cloud and its position above the anode varied. An analysis of the experimental conditions revealed that these particles are positively charged in contrast to other experiments on the levitation of dust particles in a gas-discharge plasma. An estimate of the particle charge taking into account processes of electron emission from their surface is consistent with results of measurements of the electric field strength.  相似文献   

10.
We report on the results of analysis of the mean kinetic energy and the pair correlation function of polymer particles in a plasma–dust structure under the action of laser radiation. We have observed experimentally the crystal–liquid phase transition in the monolayer of particles levitating in the near-electrode layer of a capacitive high-frequency discharge. The coupling parameter of the dust system has been estimated. The results of analysis of the modification of the polymer dust particle surface after holding in the plasma are considered. We propose an explanation of the phase transition taking into account the role of the photophoretic force in the motion of macroparticles. The effect of the photophoretic force is associated with the modification of the dust particle surface in the plasma, as a result of which the particles can effectively absorb laser radiation.  相似文献   

11.
The system of equations of motion of dust particles in a near-electrode layer of a gas discharge has been formulated taking into account fluctuations of the charge of a dust particle and the features of the nearelectrode layer of the discharge. The molecular dynamics simulation of the system of dust particles has been carried out. Performing a theoretical analysis of the simulation results, a mechanism of increasing the average kinetic energy of dust particles in the gas discharge plasma has been proposed. According to this mechanism, the heating of the vertical oscillations of dust particles is initiated by induced oscillations generated by fluctuations of the charge of dust particles, and the energy transfer from vertical to horizontal oscillations can be based on the parametric resonance phenomenon. The combination of the parametric and induced resonances makes it possible to explain an anomalously high kinetic energy of dust particles. The estimate of the frequency, amplitude, and kinetic energy of dust particles are close to the respective experimental values.  相似文献   

12.
Two charged dust particles inside a cloud of charges are considered as Debye atoms forming a Debye molecule. Cassini coordinates are used for the numerical solution of the Poisson-Boltzmann equation for the charged cloud. The electric force acting on a dust particle by the other dust particle was determined by integrating the electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the following two conditions are satisfied. First, the average distance between dust particles should be approximately equal to two Debye radii. Second, attraction takes place when similar charges are concentrated predominantly on the dust particles. If the particles carry a small fraction of total charge of the same polarity, repulsion between the particles takes place at all distances. We apply our results to the experiments with thermoemission plasma and to the experiments with nuclear-pumped plasma.  相似文献   

13.
Based on fluid equations,we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas.The cylindrical configuration is applied to better illustrate the effects of the static magnetic field,considering the azimuthal motion of the dusts.The nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically.The results show that,similar to the unmagnetized one-dimensional model,the radial ion drag plays a crucial role in the evolution of the void.Moreover,the dust rotation is driven by the azimuthal ion drag force exerting on the dust.As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field,the azimuthal component of dust velocity increases synchronously.Moreover,the angular velocity gradients of the dust rotation show a sheared dust flow around the void.  相似文献   

14.
闫佳  冯帆  刘富成  贺亚峰 《中国物理 B》2017,26(9):95202-095202
A single vortex is obtained in radio-frequency capacitive discharge in argon gas. The dust subsystem is confined in the horizontal plane with an asymmetrical saw structure placed on the lower electrode. The vortex rotates as a whole along the long side of the saw-teeth. Asymmetry of the saw structure plays an important role in the rotation of the vortex. Nonzero curl of the total force resulting from the local ion flow and the electric field in the plasma sheath could be attributed to the persistent rotation of vortex.  相似文献   

15.
The effect of dust particle concentration on gas discharge plasma parameters was studied through development of a self-consistent kinetic model which is based on solving the Boltzmann equation for the electron distribution function. It was shown that an increase in the Havnes parameter causes an increase in the average electric field and ion density, as well as a decrease in the charge of dust particles and electron density in a dust particle cloud. Self-consistent simulations for a wide range of plasma and dust particle parameters produced several scaling laws: these are laws for dust particle potential and electric field as a function of dust particle concentration and radius, and the discharge current density. The simulation results demonstrate that the process of self-consistent accommodation of parameters of dust particles and plasma in condition of particle concentration growth causes a growth in the number of high-energy electrons in plasma, but not to depletion of electron distribution function.  相似文献   

16.
In the paper, the influences of water flux on both discharge current and onset voltage were studied. Both charging and capturing particles of atomizing corona discharges were investigated when the magnetic field was used or not. The charge number of droplets and their sizes were calculated after some parameters were measured by Millikan oil drop instrument. In addition, the capturing ability of atomizing corona discharge pre-charger with magnetic field was compared with the traditional pre-charger. Eventually, the charging mechanism of atomizing corona discharge with magnetic field was analyzed through the above-mentioned experimentation and comparison. The result shows that the smallest onset voltage will appear with water flow increase in the atomizing corona discharge, and that the ion concentration between electrodes is the highest in the atomizing corona discharge charger with magnetic field than any other pre-charger, which is conducive for charging dust particles. Hence the new pre-charging technique is promising for capturing fine aerosol particles in electrostatic precipitators.  相似文献   

17.
Microparticles with sizes up to 130 μm have been confined and the velocity and diameter of particles in a plasma trap of an rf magnetron discharge with an arc magnetic field have been simultaneously measured. The motion of the gas induced by electron and ion cyclotron currents has been numerically simulated using the Navier-Stokes equation. The experimental and numerical results confirm the mechanism of the orbital motion of dust particles in the magnetron discharge plasma that is associated with the orbital motion of the neutral gas accelerated by electron and ion drift flows in crossed electric and magnetic fields.  相似文献   

18.
We derive the formalism to obtain spatial distributions of collisional correlation times for macroscopic particles undergoing granular flow from pulsed gradient spin echo nuclear magnetic resonance diffusion data. This is demonstrated with an example of axial motion in the shear flow regime of a 3D granular flow in a horizontal rotating cylinder at one rotation rate.  相似文献   

19.
Spatial variation of dust particle charges are estimated numerically for typical laboratory experiment conditions in a radio-frequency (rf) capacitive discharge. The surface potentials of macroparticles levitating in the upper part of the near-electrode layer of the rf discharge are measured. A model is proposed for the formation of irregular dust oscillations due to stochastic motion of dust in the bulk of a spatially inhomogeneous plasma (in the presence of a dust charge gradient). This mechanism is used for analyzing the results of measurements of the amplitude of vertical vibrations of dust particles in the near-electrode layer of the rf discharge. It is found that the dust charge gradient may be responsible for the development of such vibrations.  相似文献   

20.
The study aims to describe plasma parameters changes induced by clouds of disperse micron size particles. Dust clouds were formed in the positive column of glow discharge in air at pressure 0.1-0.6 torr and current 0.1-3 mA. The simultaneous registration of discharge voltage and dust cloud parameters was carried out. Experimental results were simulated using diffusion model. The dust cloud is shown to smooth the radial electron concentration profile, increase electric field strength and electron temperature and stabilize the discharge. The cloud is demonstrated to be a trap for positive ions without increase of discharge current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号