首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the electronic structures of URu2Si2 employing ultrahigh-resolution laser angle-resolved photoemission spectroscopy. The change of photoemission spectra is investigated across the hidden-order transition, and the emergence of a narrow band is clearly observed near the Fermi level for both (π,0) and (π,π) directions. In addition, it is shown that tuning of light's polarization allows the signal of a hole-like dispersive feature to enhance. These observations prove that laser angle-resolved photoemission spectroscopy is an effective tool for studying the evolution of electronic structures across the hidden-order transition in URu2Si2.  相似文献   

2.
The electronic structure of CaFe2As2, a parent compound of iron-based superconductors, is studied with high-resolution angle-resolved photoemission spectroscopy. The electronic structure of CaFe2As2 in the paramagnetic state is consistent with that of density-functional theory calculations. We show that the electronic structure of this compound is significantly reconstructed when entering the spin density wave state. We could resolve two hole-like pockets and four electron-like pockets around the (0, 0) point, and one electron-like pocket surrounded with a pair of electron- and hole-like pockets around the (π, π) point in the spin density wave state. Therefore, the complicated Fermi surface topology and electronic structure near Fermi surface of CaFe2As2 illustrate that there exists unconventional electronic reconstruction in the spin density wave state, which cannot be explained by the band folding and Fermi surface nesting pictures.  相似文献   

3.
This study has been carried out using synchrotron radiation, time-resolved luminescence ultraviolet and vacuum ultraviolet spectroscopy, optical absorption spectroscopy, and thermal activation spectroscopy. It has been found that, in scintillation spectrometric crystals LaBr3: Ce,Hf characterized by a low hygroscopicity, along with Ce3+ centers in regular lattice sites, there are Ce3+ centers located in the vicinity of the defects of the crystal structure. It has also been found that the studied crystals exhibit photoluminescence (PL) of new point defects responsible for a broad band at wavelengths of 500–600 nm in the PL spectra. The minimum energy of interband transitions in LaBr3 is estimated as E g ~ 6.2 eV. The effect of multiplication of electronic excitations has been observed in the range of PL excitation energies higher than 13 eV (more than 2E g ). Thermal activation studies have revealed channels of electronic excitation energy transfer to Ce3+ impurity centers.  相似文献   

4.
5.
The lattice and electronic properties for 5d-shells Ir substituted Fe-based superconductor SmOFe1−xIrxAs (x=0,0.2,0.25,0.3) are investigated based on the density functional theory (DFT) with a spin generalized gradient approximation SGGA+U method. The electronic density of states (DOS) of SmOFe1−xIrxAs is studied and well compared with the results of experimental X-ray photoemission spectroscopy (XPS). The calculation indicated that iridium substitution at the Fe site induced a modification of the FeAs4 tetrahedron and suppressed the magnetic ordering corresponding to the Fe-3d, which may be the main cause of inducing superconductivity in Ir-doped SmOFeAs system.  相似文献   

6.
This paper presents a spectroscopic analysis of the interface between a CuIn1−xGaxS2 (CIGS2) absorber and a CdS buffer layer on stainless steel foil by Auger electron spectroscopy (AES), inverse photoemission spectroscopy (IPES) and photoelectron spectroscopy (PES) such as X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). By combining these spectroscopic techniques, detailed information about the electronic and chemical properties of the CIGS2 surface and the CdS/CIGS2 interface can be obtained. The gallium concentration in CIGS2 films was found to increase continuously towards the Mo back contact. XPS analysis showed the presence of KCO3 on the surface of CdS, deposited on etched and un-oxidized samples indicating diffusion of potassium. No potassium was observed on oxidized as well as samples having thicker CdS (50 nm) indicating the effectiveness of oxidation and chemical bath deposition (CBD) process in cleaning the sample surface effectively. In addition, investigation of the electronic level alignment at the interface has been carried out by combining PES and IPES. Conduction band offset of −0.45 (±0.15) eV and a valence band offset of −1.06 (±0.15) eV were measured. These unfavorable conditions limit efficiency of CIGS2 thin film solar cells.  相似文献   

7.
The X-ray photoemission spectra (XPS) of the A15 type compounds V3Au, Nb3Os, Nb3Ir, Nb3Pt and Nb3Au have been studied. The inner level binding energies of the different components and the valence electron distribution were measured. The Nb4d and the X5d energy bands of the Nb3X compounds appear to be more and more separate with increasing atomic number of the X component. The comparison between the results from X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) of corresponding V3X and Nb3X compounds points out the similarity of their electronic structures.  相似文献   

8.
The spatial concentration distribution and local electronic structure of ferromagnetic Ge1−xTx (T=Cr, Mn, Fe) DMS single crystals have been investigated by using scanning photoelectron microscopy (SPEM), X-ray absorption spectroscopy (XAS), and photoemission spectroscopy (PES). It is found that doped T ions in Ge1−xTx crystals are chemically phase-separated, suggesting that the observed ferromagnetism arises from the phase-separated T-rich phases in Ge1−xTx.  相似文献   

9.
In this paper, nitridation process of GaAs (1 0 0) substrates was studied in-situ using X-ray photoelectron spectroscopy (XPS) and ex-situ by means of electrical method I-V and photoluminescence surface state spectroscopy (PLS3) in order to determine chemical, electrical and electronic properties of the elaborated GaN/GaAs interfaces.The elaborated structures were characterised by I-V analysis. The saturation current IS, the ideality factor n, the barrier height ΦBn and the serial resistance RS are determined.The elaborated GaN/GaAs structures are also exhibited a high PL intensity at room temperature. From the computer-aided analysis of the power-dependent PL efficiency measurements (PLS3 technique), the value of the interface state density NSS(E) close to the mid-gap was estimated to be in the range of 2-4 × 1011 eV−1 cm−2, indicating a good electronic quality of the obtained interfaces.Correlation among chemical, electronic and electrical properties of the GaN/GaAs interface was discussed.  相似文献   

10.
11.
The density of unoccupied electronic states in Cu has been measured employing soft X-ray appearance-potential spectroscopy (SXAPS). The LIII le  相似文献   

12.
We studied the electronic structure evolution of heavily B-doped diamond films across the metal-insulator transition (MIT) using ultraviolet photoemission spectroscopy (UPS). From high-temperature UPS, through which electronic states near the Fermi level (EF) up to ∼5kBT can be observed (kB is the Boltzmann constant and T the temperature), we observed the carrier concentration dependence of spectral shapes near EF. Using another carrier concentration dependent UPS, we found that the change in energy position of sp-band of the diamond valence band, which corresponds to the shift of EF, can be explained by the degenerate semiconductor model, indicating that the diamond valence band is responsible for the metallic states for samples with concentrations above MIT. We discuss a possible electronic structure evolution across MIT.  相似文献   

13.
We have investigated three-dimensional electronic structure for NaxCoO2 (x=0.77 and 0.65) by high-resolution angle-resolved photoemission spectroscopy to study the origin of antiferromagnetic (AF) transition of highly doped NaxCoO2(x>0.75). The a1g large hole-like Fermi surface (FS) in x=0.77 shows distinct three-dimensionality along the kz direction, and a three-dimensional small electron pocket appears around Γ point, indicating strong inter-layer electronic correlation. On the other hand, x=0.65 sample does not show three-dimensional behavior. This result indicates that transition of FS as a function of band filling is closely related to the occurrence of the magnetic transition in highly doped NaxCoO2.  相似文献   

14.
The local density of empty electronic states at the Cu sites in CuZr and CuTi has been derived from soft X-ray appearance potential spectroscopy (SXAPS) on glassy Cu60Zr40 and Cu40Ti60 samples. An energetically narrow d-like density of states is found just above the Fermi level. Results are discussed in terms of d-band hybridization.  相似文献   

15.
The density of valence-band electronic states of Ti(NiCu) alloys with different crystal structures and elemental compositions has been studied by X-ray photoelectron spectroscopy. It has been established that the change in the crystal state initiated by a martensitic transformation or a transition from the amorphous state to the crystal state does not affect the valence-band electronic state density distribution of the Ti50Ni50 and Ti50Ni25Cu25 alloys. It has been shown that a change in the elemental composition leads to a noticeable redistribution of the electronic density in alloys of the Ti50Ni50 ? x Cu x system (x = 0, 10, 15, 25, 30, 38, 50 at. %). As the copper concentration in the Ti(NiCu) alloys increases, the contribution of the Ni d states in the vicinity of the Fermi level decreases, with the d band of nickel shifting toward higher binding energies, and that of copper, toward lower binding energies.  相似文献   

16.
The complex perovskite oxide In(Mg1/2Ti1/2)O3 (IMT) is synthesized by a solid state reaction technique. The X-ray diffraction of the sample at 30 °C shows a monoclinic phase. The dielectric properties of the sample are investigated in the temperature range from 143 to 373 K and in the frequency range from 580 Hz to 1 MHz using impedance spectroscopy. An analysis of the dielectric constant ε′ and loss tangent (tan δ) with frequency is performed assuming a distribution of relaxation times. The Cole-Cole model is used to explain the relaxation mechanism in IMT. The scaling behavior of imaginary part of electric modulus (M″) shows that the relaxation describes the same mechanism at various temperatures. The electronic structure and hence the ground state properties of IMT is studied by X-ray photoemission spectroscopy (XPS). The valence band XPS spectrum is compared with the electronic structure calculation. The electronic structure calculation indicates that the In-5s orbital introduces a significant density of states at the Fermi level, which is responsible for a high value of conductivity in IMT.  相似文献   

17.
Recently, tetramantane, a member of diamondoid series (C4n+6H4n+12), has shown to exhibit negative-electron-affinity effect which has a potential use for efficient electron emitting devices. Here, we explore the electronic property of adamantane (C10H16), the smallest member of the series. We prepare adamantane films on Si(1 1 1) substrates and then study their electronic structure with photoemission spectroscopy. Photoelectron spectra of adamantane on Si(1 1 1) have shown a peak at low-kinetic energy which could be a generic property of diamondoids. The possibility of the negative-electron-affinity effect in adamantane is further discussed.  相似文献   

18.
19.
A unique applicability of Compton spectroscopy in probing the electronic states of rare earth aluminides using high energy (662 keV) γ-rays is reported. We have measured first-ever Compton profiles of Dy1-xErxAl2 (x=0, 0.2) using 20Ci 137Cs Compton spectrometer. The charge reorganization in Dy1−xErxAl2 (x=0, 0.2), on the formation of compound, has been discussed using the valence band Compton profile data. The experimental Compton profile data unambiguously establish charge transfer from Al to Dy (Dy and Er) on formation of x=0.0 (0.2) compound, which is in tune with spin polarized relativistic Korringa–Kohn–Rostoker (SPR-KKR) calculations. A reasonable agreement between SPR-KKR based Compton profiles and the experimental data show applicability of the Green function method in predicting the electronic properties of rare earth compounds.  相似文献   

20.
Large effects of vibronic coupling upon vibrational levels of the ground (1A′) and first excited (1A″) singlet electronic states of cis acrolein (2-propenal) are successfully modeled. Some implications for CH2CHCHO spectroscopy and photophysics are discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号