首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
InP film samples were prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which were atomized with compressed air as carrier gas onto glass substrates at 500 °C with different thicknesses of the films. The structural properties of the samples have been determined by using X-ray diffraction (XRD). It was found that the crystal structure of the InP films is polycrystalline hexagonal. The orientations for all the obtained films are along the c-axis perpendicular to the substrate. It is observed that the crystallite sizes of the films increase with the thickness of the film up to 616 nm. The changes observed in the morphology and structural phases related to the film thickness have been discussed in detail.  相似文献   

2.
For thin films prepared from non-conjugated polymer, including poly(diphenylene phthalide) (PDP), a rather enigmatic transition to a metal-like high-conductivity state is observed. The existing models of the HCS in wide-band polymers were examined. The main feature of these models is a significant (often highly improbable) rearrangement of the electronic structure of part of the macromolecules under the action of external factors (an electric field, light, injected electrons, etc.). The model of the HCS in PDP proposed in the current work is based on the results of studying the electron-acceptor properties of fragments of PDP macromolecules and the concepts of molecular electronics. Electron-acceptor unoccupied orbitals of the fragments of macromolecules and the corresponding energy levels are assumed to act as transport nodes for the resonance coherent tunneling of electrons. Since PDP has no intrinsic charge carriers, the key role in the formation of the HCS is played by the injection of electrons from the electrodes and, hence, the processes occurring in the interface. The resonance injection of electrons from the Fermi level of the electrode immediately onto the transport levels of the polymer is achieved due to the applied electric field, chemical connection of macromolecules to the electrodes, and ensuing modification of the interface dipole. The connection of PDP macromolecules to the electrodes occurs via defective hydroxyl and carboxyl groups. Carboxylate ions, which interact with the electrode metal, can also be formed because of the dissociative capture of injected electrons by phthalide cycles adjacent to the electrode. Since a conducting channel in a 1-μm-thick film should be composed of at least ten PDP macromolecules, it is necessary to assume that an efficient electron transfer occurs between macromolecules. The proposed concept was additionally substantiated by invoking the published data on the conductivity of DNA molecules and the field emission of electrons from metals coated with a PDP film.  相似文献   

3.
Fully reversible light-induced switching of the capacitance with changes larger than 50% has been achieved by using photo-active thin polymer films. The films consist of PMMA polymer blended with high concentrations of branched azobenzene ether dye molecules. Polymer thin sheet capacitors can be easily produced by spin coating and drop casting in various thicknesses ranging from 100 nm to 8 μm, respectively. Reversible capacitance switching is induced by illumination with UV and visible light, respectively. The capacitance change is correlated to the trans to cis isomerization of the azobenzene ether molecules and the alignment of the molecular dipoles in the film. Switching times depend on chromophore concentration, film thickness and light intensity used. The influence of wavelength of the light, of the temperature as well as of an electrical field applied during illumination on the capacitance change is addressed.  相似文献   

4.
《Composite Interfaces》2013,20(4-6):423-439
The surface behaviour of a two-phase polymer mixture depends on the chemical structure of the polymer components, the interaction between the two polymers and the processing conditions. The microscopic morphology and the surface composition need to be known in order to fully utilize the thin film properties. The technique of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to obtain the molecular surface composition of thin films of blends and block copolymers. The depth profiling tool of Nano-SIMS, a dynamic SIMS technique, helps to provide the chemical mapping of the surface in 2D and 3D. The surface morphology is investigated using AFM. Thin films of PS and PMMA diblock copolymers with molecular weight of 12K-12K and 10K-10K and blends of PS/PMMA (10K/10K) for thicknesses ranging from 5 nm to 50 nm are examined. For the blends, the ToF-SIMS spectra for all the thicknesses show the same behaviour of a high increase of PMMA on the surface after annealing. Nano-SIMS images reveal the formation of nanostructures on the annealed surfaces and AFM studies show these nanostructures to be droplets having distinct phase shift from the surrounding matrix. The droplet dimensions increase with the increase of the thickness of the film but the absolute intensity from the ToF-SIMS spectra for all the annealed films remains almost the same. For the copolymers, the ToF-SIMS spectra show that there is a decrease of PMMA on the surface for the annealed films when compared to the as-cast ones. AFM morphology reveals that, for different thicknesses, annealing induces different topographical features like droplets, holes, spinodal patterns, etc. but with no distinct phase shift between the patterns and the surrounding matrix. The two different copolymers of comparable molecular weight are found to exhibit very different topography even when the thickness of the films remained the same. The surface composition from the ToF-SIMS data, however, was not found to vary even when the topography was completely different.  相似文献   

5.
Adsorption of thin films of polymer or protein onto polystyrene spheres in aqueous solutions is studied by optical mixing spectroscopy. The film is characterized as to hydrodynamic thickness, optical thickness, and surface charge density. These quentities are used to infer some aspects of the film structure.  相似文献   

6.
A comparative investigation of the surface structure of ultrahigh molecular weight polyethylene film filaments obtained with different draw ratios from xerogels prepared from 1.5 wt % polymer solutions in decaline and mineral oil has been performed using a SUPRA-55V scanning electron microscope and a nanoluminograph for recording thermoluminescence of ultrathin near-surface layers of solids. It has been found that, with an increase in the draw ratio, the luminescence intensity decreases, and the peaks responsible for the segmental mobility are shifted toward higher temperatures. It has been assumed that this is associated with the improvement of the structure of near-surface layers of the polymer (with a decrease in the number of microcavities and segments of molecules with a high degree of coiling). It has also been revealed that the peaks observed in glow curves of the oriented gel samples from polymer solutions in decaline are shifted more significantly than those of the gel samples from polymer solutions in mineral oil, and the extremely oriented films are characterized by a large discretization of kinetic units of motion.  相似文献   

7.
Acquisition of a more detailed understanding of all technological processes is currently a relevant tendency in pharmaceutical technology and hence in industry. A knowledge of film formation from dispersion of polymers is very important during the coating of solid dosage forms. This process and the structure of the film can be influenced by different additives. In the present study, taste-masking films were prepared from aqueous citric acid solutions of a cationic polymer (Eudragit® E PO) with various hydrophilic plasticizers (glycerol, propylene glycol and different poly(ethylene glycols)). The mechanical properties, film thickness, wetting properties and surface free energy of the free films were studied. The aim was to evaluate the properties of surface of free films to predict the arrangement of macromolecules in films formed from aqueous solutions of salts of cationic polymers. A high molecular weight of the plasticizer decreased the work of deformation. The surface free energy and the polarity were highest for the film without plasticizer; the hydrophilic additives decreased these parameters. The direction of the change in polarity (a hydrophilic component caused a decrease in the polarity) was unexpected. It can be explained by the change in orientation of the macromolecules, a hydrophobic surface being formed. Examination of the mechanical properties and film thickness can furnish additional results towards a knowledge of film formation by this not frequently applied type of polymer from aqueous solution.  相似文献   

8.
InP film samples are prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which are atomized with compressed air as carrier gas onto glass substrates at 500°C with different thicknesses of the films. The structural properties of the samples are determined by x-ray diffraction (XRD). It is found that the crystal structure of the InP films is polycrystalline hexagonal. The orientations of all the obtained films are along the c-axis perpendicular to the substrate. The electrical measurements of the samples are obtained by dc four-probe technique on rectangular-shape samples. The effects of temperature on the electrical properties of the InP films are studied in detail.  相似文献   

9.
Pentacene (C22H14) thin films with different thicknesses were fabricated to study the dynamic growth process and morphology of pentacene on different substrates. A discontinuous monomolecular layer was observed when a pentacene thin film is about 0.5 nm thick on native oxide silicon wafer. The terraced islands and dendritic structure gradually formed with increasing pentacene thin film thickness. The height of each layer is about 1.4 nm which corresponds well with the length of the long axis of the pentacene molecule at 1.45 nm. Experimental results show that the pentacene molecule is perpendicular to the silicon wafer surface with a slight tilted angle. However, the pentacene molecular orientation on a polymer pre-covered indium tin oxide coated substrate could not give any indication on the scale of nanometers. The surface roughness of substrates strongly influences pentacene molecular diffusion and the morphology of pentacene thin films.  相似文献   

10.
If mesoporous thin films (MTFs) are to be utilised in device applications it is important that we produce films which not only possess a single pore direction across large substrate areas (in the range of microns) but are also relatively defect free. In this paper we report the use of confining architectures in the form of topographically patterned rectangular section channels etched into native silicon substrates to promote ordering of the mesopores. We discuss the effects of the channels on films with different thicknesses. The film thickness is shown to be a critical parameter in defining highly orientated and defect-free films and the data demonstrate that it is possible to achieve a single mesoporous silica domain across macroscopic dimensions with thin film thicknesses of approximately 200 nm but that critically pore order can be lost in ultra thin and thicker films produced by these methods.  相似文献   

11.
Crystallization of poly(ethylene oxide) (PEO) in thin films was studied using hot-stage polarized optical microscopy. Isothermal linear crystal growth rates were measured for various film thicknesses at various degrees of undercooling. At a given crystallization temperature, the linear crystal growth rate decreased exponentially with decreasing film thickness below a film thickness of 80 nm. Films showed similar spherulitic morphology down to a film thickness of 30 nm. Control experiments on hydrophilic and hydrophobic surfaces showed that surface chemistry affects stability of the polymer films and causes a competition between crystallization and dewetting.  相似文献   

12.
We have studied the thermosensitive property of methylcellulose (MC) thin films supported on Si substrate by static sessile drop contact angle measurements, and their surface properties and thin film structure by x-ray reflectivity (XRR) and atomic force microscopy (AFM) techniques. From the static sessile drop contact angle measurements, the MC thin films showed the characteristic hydrophilic-to-hydrophobic transition at ~70?°C, which is the lower critical solution temperature of the bulk solution volume phase separation transition. For films with thickness d ≤ R(g), the onset of such a transition is affected by the film thickness while very thick films, d ? R(g), yielded higher contact angles. Annealing the MC thin films with thicknesses ~200 ? (near the radius of gyration, R(g), of the polymer) below the bulk glass transition temperature (T(g) ~ 195?° C) would not change the hydrophobic switch nature of the film but annealing 'at' and above the bulk T(g) would change its surface property. From surface topography images by AFM, there were no significant changes in either the roughness or the film texture before and after annealing. With XRR data, we were able to determine that such changes in the surface properties are highly correlated to the film thickness changes after the annealing process. This study, we believe, is the first to examine the thermal annealing affects on the thermal response function of a thermoresponsive polymer and is important for researching how to tailor the hydrophobic switching property of MC thin films for future sensing applications.  相似文献   

13.
Nonlinear optical characteristics of single-walled carbon nanotubes (SWCNTs) dispersed in dichlorobenzene and imbedded in polymer were investigated at 800 nm using the time-resolved optical Kerr gate technique. For systematic study of the influence of SWCNT bundling on optical nonlinearities, SWCNT solutions with different concentrations and a series of SWCNT/polymer composites deposited on glass substrates with different concentrations and thicknesses were prepared. The nonlinear response was comparable to the pulse duration of the laser used (~90 fs) both in SWCNT solutions and SWCNT/polymer composites. Over three orders of magnitude enhancement was observed in the third-order nonlinear susceptibility of SWCNT/polymer composite film compared with that of SWCNT solution. An appreciable reduction of microscopic and macroscopic nonlinearities was observed with increasing SWCNT concentrations due to stronger bundling of SWCNTs.  相似文献   

14.
Mustafa Ö  ztas 《中国物理快报》2008,25(11):4090-4092
InP film samples were prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which were atomized with compressed air as carrier gas onto glass substrates at 500°C with different thicknesses of the films. It is found that the resistivity of the polycrystalline films strongly depends on the grain size. It is observed that the grain size of the films increase with the decrease of the energy band gap and strain of the film. The changes observed in the energy band gap and strain related to the film grain size of the films are discussed in detail.  相似文献   

15.
Jen YJ  Chen CH  Yu CW 《Optics letters》2011,36(6):1014-1016
Thin films are fabricated from arrays of silver nanorods with thicknesses of 160?nm and 200?nm, to function as a metamaterial. The negative refractive index and negative permeability are retrieved from measured reflection and transmission coefficients using walk-off interferometer in the visible regime. A negative-index-material thin film with negative permittivity or (and) permeability can be produced by glancing angle deposition.  相似文献   

16.
A new technique is proposed for preparing lead titanate ferroelectric films. The technique involves a solid-phase reaction in an oxygen environment between titanium and lead layers deposited on a substrate. The thicknesses of the component films being deposited are chosen based on the stoichiometric ratio in the compound to be synthesized. The composition and structure of the film obtained are checked by x-ray phase analysis. The films exhibit a dielectric hysteresis loop and a temperature dependence of the permittivity characteristic of ferroelectrics. A study has been made of the temperature and thickness dependences of the film coercive field. They also are shown to follow a pattern typical of ferroelectrics.  相似文献   

17.
张波  侯延冰  滕枫  娄志东  刘小君  胡兵  武文彬 《中国物理 B》2011,20(7):77803-077803
We investigate the amplified spontaneous emission (ASE) from an Ag-backed poly[2-methoxy-5-(2’-ethylhexyloxy)1,4-phenylenevinylene] (MEH-PPV) film with different film thicknesses.The ASE characteristics of Ag-backed MEHPPV films with different thicknesses show that increasing the film thickness can reduce the influence of the Ag cladding.The threshold,the gain,and the loss of the device with a thickness of 170 nm are comparable to those of a metal-free device.The lasing threshold of this device is about 7.5 times that of a metal-free device.Our findings demonstrate that Ag-backed MEH-PPV film with an appropriate thickness can still be a good polymer gain material for the fabrication of solid-state lasers.  相似文献   

18.
We have developed a patterning procedure based on selective ablation using interference patterns with ns-laser pulses to fabricate periodic arrays on large areas of poly(3,4-ethylene dioxythiophene)-poly(4-styrene sulfonic acid) (PEDOT-PSS) thin films over a metallic gold–palladium layer. Single pulse laser-ablation experiments were performed to study the ablation characteristics of the thin films as a function of the film thickness. The ablation threshold fluence of the PEDOT-PSS films was found to be dependent on thickness with values ranging from 43 mJ/cm2 to 252 mJ/cm2. Additionally, fluences at which the PEDOT-PSS films could be ablated without inducing damage in the underlying metallic films were observed (128 mJ/cm2 and 402 mJ/cm2 for film thicknesses of 70 nm and 825 nm, respectively). Linear periodic arrays with line spacings of 7.82 μm and 13.50 μm were also fabricated. The surface topography of these arrays was analyzed using scanning electron and atomic force microscopy. For thicker polymeric layers, several peeled sub-layers of the conjugated polymer with average thicknesses of about 165–185 nm were observed in the ablation experiments. The size and scale of structures produced by this technique could be suitable for several biomedical applications and devices in which controlling cell adhesion, promoting cell alignment, or improving biocompatibility are important.  相似文献   

19.
We have studied free horizontal liquid films made with semidilute polyelectrolyte solutions. A stratification phenomenon is observed during film thinning, with a step size close to the mesh size of the polymer network: dark domains nucleate and expand, the outer polymer layer dewetting a thinner film. The kinetics of dark spot expansion is not simply related to bulk viscosity and becomes faster when the film thickness decreases, suggesting an increase of the chain mobility of the confined polymer chains. These findings are similar to recent ones for other confined liquids and are the first reported so far for freely standing films.  相似文献   

20.
A poly(octadecene-alt-maleic anhydride) (POMA) film was covalently immobilized on N-[3-(trimethoxylsilyl)propyl]ethylenediamine self-assembled monolayer modified silicon surface. Attenuated total reflectance Fourier transform infrared spectra were used to confirm the chemical bonding. Water contact angles and ellipsometric thicknesses were measured before and after annealing treatment. Atomic force microscopy was applied for top morphology, surface adhesion force and friction force. Anti-wear properties of the films were also evaluated on a ball-on-plate tribometer. It was found that annealing treatment which would evoke a conformation transform thermodynamically, was a critical step in the preparation of anti-wear films, especially for polymer ones. The correlation between structure and tribological property was revealed, which has profound meaning in designing excellent anti-wear nano-coatings used in microelectronic mechanical systems (MEMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号