首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 1 毫秒
1.
The paper examines the roles and purposes of proof mentioned by university research faculty when reflecting on their own teaching and teaching at their institutions. Interview responses from 14 research mathematicians and statisticians who also teach are reported. The results suggest there is a great deal of variation in the role and purpose of proof in and among mathematics courses and that factors such as the course title, audience, and instructor influence this variation. The results also suggest that, for this diverse group, learning how to prove theorems is the most prominent role of proof in upper division undergraduate mathematics courses and that this training is considered preparation for graduate mathematics studies. Absent were responses discussing proof's role in preparing K-12 mathematics teachers. Implications for a proof and proving landscape for school mathematics are discussed.  相似文献   

2.
The prevalence of prediction in grade-level expectations in mathematics curriculum standards signifies the importance of the role prediction plays in the teaching and learning of mathematics. In this article, we discuss benefits of using prediction in mathematics classrooms: (1) students’ prediction can reveal their conceptions, (2) prediction plays an important role in reasoning and (3) prediction fosters mathematical learning. To support research on prediction in the context of mathematics education, we present three perspectives on prediction: (1) prediction as a mental act highlights the cognitive aspect and the conceptual basis of one's prediction, (2) prediction as a mathematical activity highlights the spectrum of prediction tasks that are common in mathematics curricula and (3) prediction as a socio-epistemological practice highlights the construction of mathematical knowledge in classrooms. Each perspective supports the claim that prediction when used effectively can foster mathematical learning. Considerations for supporting the use of prediction in mathematics classrooms are offered.  相似文献   

3.
It is widely accepted by mathematics educators and mathematicians that most proof-oriented university mathematics courses are taught in a “definition-theorem-proof” format. However, there are relatively few empirical studies on what takes place during this instruction, why this instruction is used, and how it affects students’ learning. In this paper, I investigate these issues by examining a case study of one professor using this type of instruction in an introductory real analysis course. I first describe the professor’s actions in the classroom and argue that these actions are the result of the professor’s beliefs about mathematics, students, and education, as well as his knowledge of the material being covered. I then illustrate how the professor’s teaching style influenced the way that his students attempted to learn the material. Finally, I discuss the implications that the reported data have on mathematics education research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号