首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Diffusion properties of mesostructured zeolite 5A were investigated by employing n-alkanes as probe molecules using the zero length column (ZLC) method. The mesopores were found to enhance molecule diffusion. Moreover, the effective diffusion time constant (D eff/R 2) increased with mesoporosity in the zeolites between 308 K and 393 K, whereas the activation energy decreased with increasing mesopore volume. The effective diffusivity values of n-alkanes in mesoporous zeolite 5A were generally higher than that the microporous zeolite 5A sample. This clearly implied the important role of the mesopore in zeolites crystals in facilitating the transport of reaction molecules due to shorter average diffusion path length and less steric hindrance.  相似文献   

2.
《Microporous Materials》1997,8(1-2):39-42
Liquid-phase competitive adsorption of three xylene isomers on ZSM-5 zeolites was studied. HZSM-5 zeolites exhibited an extremely high para-selectivity, this para-selectivity decreased with increasing adsorption temperatures. The introduction of Na+ enhanced the para-selectivity. It is apparent that such a high para-selectivity is caused solely by thermodynamic shape selectivity. The complete removal of impurities with small molecular dimensions, such as p-xylene and benzene, from commercial o- and m- xylenes could be attained by the repetition of the shape-selective adsorption on HZSM-5 zeolites.  相似文献   

3.
Temperature programmed desorption and adsorption (TPDA) studied under quasi-equilibrium conditions using typical flow TPD setup equipped with a chromatographic TCD detector has been found a good method of obtaining the equilibrium data characterizing adsorption of n-hexane on high silica HZSM-5 and HY zeolites. The equilibrium control of sorption has been confirmed by linearity of the isosters constructed from the TPDA profiles. For HZSM-5 it was corroborated by very good agreement obtained in fitting the experimental data with the model based on the dual site Langmuir (DSL) adsorption function. The values of the adsorption enthalpy and entropy, either determined from the adsorption isosters or as the fitted model parameters, were close to the literature data. Increase of the isosteric adsorption heat of hexane with coverage was observed for both zeolites (72-90 kJ mol−1 for HZSM-5 and 46-61 kJ mol−1 for HY).  相似文献   

4.
Temperature-programmed desorption coupled with mass spectrometer as a detector (TPD), IR and 13C NMR measurements are used to study the adsorption of n-hexane on hydrated HZSM-5 and NH4ZSM-5 zeolites. The 13C NMR measurements show that n-hexane can access the pore structure of ZSM-5 zeolites previously saturated with water. TPD spectra of n-hexane are monitored in the temperature region 50–300°C, in the case of fully or partially hydrated samples; two-stage desorption of n-hexane is found. Simultaneous desorption of water and n-hexane in the same temperature region are found, in all investigated samples.  相似文献   

5.
A facile approach was developed for the preparation of nano-sized HZSM-5 with a hierarchical mesoporous structure by adding imidazole into conventional zeolite synthesis precursor solution. The physicochemical properties of modified HZSM-5 were characterized by X-ray diffraction(XRD), N_2 adsorption–desorption isotherms, scanning electron microscopy(SEM), NH_3-temperature-programmed desorption(NH_3-TPD) and pyridine adsorption infrared spectroscopy(Py-IR). The coke in spent catalysts was characterized by thermogravimetry(TG). The results showed that hierarchical HZSM-5 zeolites with excellent textural properties, such as abundant porous structure, uniform particle size and suitable acidity, could be synthesized by the recipe of one-pot synthesis routes. Moreover, the obtained HZSM-5 exhibited higher selectivity of total aromatics as well as longer lifetime in the catalytic conversion of methanol to aromatics, comparing with conventional HZSM-5. It is expected that the synthesis approach demonstrated here will be applicable to other zeolites with particular textural properties and controllable particle sizes, facilitating the emergence of new-type porous materials and their related applications in catalysis and separation.  相似文献   

6.
In this work, the values of entropy changes related to n-hexane adsorption onto ion-exchanged ZSM-5 zeolites were calculated from differential heats, obtained from microcalorimetric experiments. The existence of enthalpy–entropy compensation effect, evidenced by the linearity of −ΔH vs. −ΔS plots and characteristic for all investigated ZSM-5 zeolites, was found. In the case of ZSM-5 structure, modifying the zeolite structure by ion-exchange gives rise to changes in the heats of adsorption and adsorption entropy in the same manner. The factors that can influence the appearance of entropy–enthalpy compensation were discussed. It was found that compensation effect is governed by ion-induced dipole interaction between highly polarising cationic centres in zeolite and nonopolar n-hexane molecules, and hence, depends on the size, charge and electron configuration of the cation. It was found also that the compensation temperature is in correlation with the number of zeolites’ strong acid centres. Contrary to the adsorption of n-hexane on ZSM-5 zeolites, compensation effect was not found for the adsorption of the same gas on faujasite-type zeolites.  相似文献   

7.
In this study, the oligomerization of a butene mixture composed of 1-butene, cis-2-butene and trans-2-butene over several types of zeolites in a fixed-bed catalytic reactor at an elevated pressure was studied to produce hydrocarbons in the jet fuel range (C8–C16). Three types of zeolites, HZSM-5, Hβ and HY, were compared to evaluate the performance during the synthesis of jet fuel via the oligomerization of the aforementioned butene mixture. Compared to HY and Hβ, HZSM-5 showed a very stable butene conversion rate with high selectivity to jet-fuel-range hydrocarbon, which could be attributed to high resistance to coke resulting from the pore structure. HZSM-5 (50) shows the best quantitative conversion performance and yield for jet fuel for a time-on-stream of up to 6 h. It was also noted that the branched-to-linear hydrocarbon ratio reached 8.7 over the HZSM-5 (50) catalyst, which is beneficial to improve the cold properties of jet fuel. The present study reveals that HZSM-5 (50) is a potential catalyst for jet fuel synthesis through the oligomerization of butene mixture, exhibiting high stability and a high yield.  相似文献   

8.
不同碱处理制备多级孔HZSM-5催化剂及噻吩烷基化性能研究   总被引:1,自引:0,他引:1  
用Na2CO3、TPAOH和TPA+/CO32-混合碱分别处理HZSM-5分子筛,采用FT-IR、XRD、XRF、N2吸附脱附、SEM、NH3-TPD及Py-FTIR表征手段对各类碱处理前后的HZSM-5分子筛进行表征。结果表明,3种类型的碱处理HZSM-5分子筛后,均能形成微孔-介孔多级孔道的HZSM-5(A)催化剂,并能调变催化剂的酸性,其中,TPA+/CO32-混合碱处理得到的HZSM-5(TPA+/CO32-)催化剂,比表面积最大,介孔数量最多。在小型固定床反应器上,考察了HZSM-5和HZSM-5(A)催化剂的噻吩烷基化性能,结果表明,HZSM-5(TPA+/CO32-)催化剂因为具有适当的多级孔孔道和较多的B酸中心而表现出较高的噻吩转化率和1-己烯对噻吩的选择性。  相似文献   

9.
采用浸渍法制备了一系列不同Mg含量(0-8%,w)的改性纳米HZSM-5分子筛.利用X射线衍射(XRD)、铝固体魔角旋转核磁共振(27AlMASNMR)、N2吸附/脱附、氨-程序升温脱附(NH3-TPD)和吡啶吸附傅里叶变换红外(FT-IR)光谱等技术对改性前后样品的结构和酸性进行了详细表征;并在常压、500℃和甲醇空速(WHSV)为1.0h-1的反应条件下,在连续流动固定床反应器上考察了其对甲醇制丙烯反应的催化性能.结果表明,随着Mg含量的增加,丙烯和丁烯的选择性逐渐增大,而甲烷、乙烯和芳烃的选择性逐渐降低.催化剂的稳定性先随Mg含量的增加而增加,当Mg含量为2%时达到最大,之后又随Mg含量的增加而降低.MgO改性对纳米HZSM-5分子筛催化性能的影响主要是由其酸性和织构性能的改变而引起的.  相似文献   

10.
In this study, in order to develop catalysts for the selective isomerization of higher paraffin, the hydroisomerization reaction of n-dodecane was performed as a model reaction. Pt/ZSM-48, Pt/HZSM-5, Pt/HY, and Pt/SAPO-11 were examined for the selective hydroisomerization of n-dodecane. The catalysts were characterized via X-ray powder diffraction, N2 adsorption, and the temperature-programmed desorption of ammonia. Among the catalysts studied, the Pt/HZSM-48 catalyst exhibited the best isomerization selectivity in the hydroisomerization reaction of n-dodecane, which is attributed to the moderate acid sites and medium-sized pores present in the HZSM-48. The highest iso-dodecane yield was obtained at a reaction temperature of 280 °C in the Pt/HZSM-48 catalyst. The optimal selectivity of the n-dodecane hydroisomerization over the Pt/SAPO-11 catalyst was obtained at approximately 300 °C, which was slightly higher than that of the Pt/HZSM-48 catalyst.  相似文献   

11.
Decomposition of N2O on modified zeolites, crystalline titanosilicalites, and related amorphous systems is studied by the catalytic and spectroscopic methods. Zinc-containing HZSM-5 zeolites and titanosilicalites with moderate Ti/Si ratios are shown to exhibit a better catalytic performance in N2O decomposition as compared with conventionally used Cu/HZSM-5 zeolites and amorphous Cu-containing catalysts. Dehydroxylation of the HZSM-5 zeolite by calcination at 1120 K results in an enhancement of the N2O conversion. The mechanism of the reaction and the role of coordinatively unsaturated cations and Lewis acid sites in N2O decomposition are discussed on the basis of the spectroscopic data.  相似文献   

12.
5A zeolites were facilely synthesized from attapulgite clay and sodium aluminate precursors. The optimum synthesis condition for 4A zeolite (Na-form) were H2O/attapulgite ratio of 40:1 volume/mass, NaOH/attapulgite mass ratio of 2.35:1, the crystallization time was 4 h at 80–85 °C. The 4A zeolite was converted to related 5A zeolite (Ca-form) through ionic exchanges using calcium chloride solution with the Si/Al mole ratio of 1.3. SEM images demonstrated that as-synthesized 5A zeolites are ordered cubic crystals, average crystals length dimension is 1–2 μm. And the zeolites product had a specific surface area of 482 m2 g?1 and total pore volume of 0.274 cm3 g?1. The static adsorption experiments showed that the equilibrium adsorption capacities of n-decane and n-pentadecane on produced 5A zeolite were 0.253 and 0.510 g g?1, respectively. And the adsorption equilibrium time of n-decane and n-pentadecane on 5A zeolite were 45 and 60 min, respectively. The experimental adsorption data of n-decane and n-pentadecane on three zeolites could be properly fitted by the Langmuir–Freundlich isotherm model.  相似文献   

13.
本文在298K-493K温度范围内,测定了二甲苯在ZSM-5分子筛中的吸附等温线和扩散系数。间二甲苯在HZSM-5分子筛中的吸附是需要较高活化能而为扩散控制的物理吸附,只有在较高温度下(>393K),才能进入分子筛的敛孔,其扩散系数比对二甲苯小三个数量级。对、间二甲苯在HZSM-5分子筛中的吸附量随温度升高而渐趋接近。但HZSM-5经镁改性后,间二甲苯吸附量大幅度下降,而对二甲苯吸附量变化不大,说明孔道结构因素对提高烷基苯转化的对位选择性起着相当重要的作用。增大分子筛的晶粒尺寸,二甲苯的扩散系数变化不大,表明大晶粒ZSM-5之所以能提高对位选择性,原因在于扩散路线的增长导致扩散较慢的间二甲苯异构化为扩散较快的对二甲苯。  相似文献   

14.
Hierarchical crystals with short diffusion path, conventional microcrystals and nanocrystals of ZSM-5 zeolites were used for biodiesel production from waste frying oils and were assessed for their catalytic activity in regard to their pore structure and acidic properties. Produced zeolites were characterized using XRD, nitrogen adsorption–desorption, SEM, TEM, X-ray fluorescence, and FTIR. Pore size effect on molecular diffusion limitation was assessed by Thiele modulus calculations and turnover frequencies (TOF) were used to discuss the correlation between acidic character and catalytic performance of the zeolites. Owing to the enhanced accessibility and mass transfer of triglycerides and free fatty acids to the elemental active zeolitic structure, the catalytic performance of nanosponge and nanosheet hierarchical zeolites was the highest. A maximum yield of 48.29% was reached for the transesterification of waste frying oils (WFOs) using HZSM-5 nanosheets at 12:1 methanol to WFOs molar ratio, 180 °C, 10 wt % catalyst loading, and 4 h reaction time. Although HZSM-5 nanosponges achieved high conversions, these more hydrophilic zeolites did not function according to their entire acidic strength in comparison to HZSM-5 nanosheets. NSh-HZSM5 catalytic performance was still high after 4 consecutive cycles as a result of the zeolite regeneration.  相似文献   

15.
氟改性对纳米 HZSM-5 分子筛催化甲醇制丙烯的影响   总被引:1,自引:0,他引:1  
郭强胜  毛东森  劳嫣萍  卢冠忠 《催化学报》2009,30(12):1248-1254
 在比较了纳米和微米 HZSM-5 分子筛催化甲醇制丙烯反应性能的基础上, 对纳米 HZSM-5 分子筛进行了氟改性. 利用透射电镜、N2 吸附、X 射线衍射、氨程序升温脱附和吡啶吸附-红外光谱技术对改性前后的样品进行了表征, 并在常压、500 oC 和甲醇空速 (WHSV) 为 1.0 h–1 的反应条件下, 在连续流动固定床微型反应器上考察了其催化甲醇制丙烯的性能. 结果表明, 当氟含量<10% 时, 随氟含量的增加, 改性纳米 HZSM-5 分子筛的酸量减少, 酸强度降低, 从而使丙烯选择性和催化剂稳定性不断提高. 但过量 (15%) 氟的改性使纳米 HZSM-5 分子筛的酸量、比表面积和孔容均明显减小, 致使其稳定性反而降低. 在适量 (10%) 氟改性的纳米 HZSM-5 分子筛上, 丙烯选择性和维持甲醇完全转化的反应时间分别由原来的 30.1% 和 75 h 增加到 46.7% 和 145 h.  相似文献   

16.
Grand canonical Monte Carlo and configurational bias Monte Carlo techniques were employed to simulate the adsorption of binary mixtures of butane isomers and quaternary mixtures in nine zeolites at 300 K. For binary mixtures the results show there is a critical pore size, which is 10-membered-ring about 5.6 Å. The channel sizes of BEA, ISV, MOR and CFI are larger than this critical pore size, they prefer i-butane than n-butane, whereas TON with smaller channel size than critical pore size prefers n-butane than i-butane, but its selectivity decreases with pressure increasing. MFI, MEL and TER prefer i-butane than n-butane at low pressure, but with pressure increasing, the selectivity is reversed. BOG prefers i-butane than n-butane but the selectivity decreased with pressure increasing. It demonstrates that the adsorption and selectivity are controlled by both pore size and pore structure. The n-butane–i-butane–n-pentane–2-methylbutane quaternary mixtures adsorbed in these nine zeolites were studied, and the results show alkane chain length dependence at low pressure, but the adsorption is controlled by pore size and structure with pressure increasing in all the zeolites except for TON and BOG.  相似文献   

17.
The diffusion behavior of C4–C10 n-alkanes in silicalite-1 has been investigated by using the Zero Length Column method. The diffusivities derived from measurements at different purge rates with different purge gases confirming intracrystalline diffusion control. Data are compared with results reported in the literature for MFI zeolites. The diffusivities were found to be consistent and agree well with data previous obtained by ZLC. However, these data showed a remarkable disagreement with other reported techniques (PFG-NMR, QENS and Permeation). The eventual influence of carbon dioxide (CO2) adsorption on diffusion properties of n-alkanes in silicalite was also investigated. For this purpose, a series of experiments was performed involving hydrocarbons mixed with CO2. Data were obtained at 303 K and flow rates between 20 and 80 mL/min. The presence of CO2 does not seem to influence the intracrystalline transport rate of the investigated light hydrocarbons (n-C4 and n-C6). On the other hand, the situation for n-C8 and n-C10 is more complex. The diffusivity values are higher compared to the previously reported values.  相似文献   

18.
The electrochemical properties of thionine dye adsorbed into ZSM-5 and HZSM-5 zeolites (TH/ZSM-5, TH/HZSM-5) are studied in 0.5 M KCl solution. The dye is strongly retained and not easily leached from the zeolites matrix. The samples are incorporated into the carbon paste electrode (TH/ZSM-5/P, TH/HZSM-5/P) for cyclic voltammetric measurements. The redox reactions of thionine incorporated into ZSM-5 zeolite contain a quasi-reversible, two-electron one proton in the pH range 1 to 10, but thionine-loaded HZSM-5 zeolite undergoes a quasi-reversible two-electron two-protons redox reaction under acidic conditions and a one proton two-electron redox reaction takes place under basic conditions. The separation of the anodic and cathodic potentials (E p) is high in thionine-loaded zeolites (>100) with respect to the solution of thionine (E p = 34 for ZSM-5/P and 36 mV for HZSM-5/P), indicating that there are strong interaction between thionine molecules and the zeolites. The midpoint potentials (E m) for TH/ZSM-5/P and TH/HZSM-5/P are −0.203 and −0.381 V, respectively. However, the midpoint potentials for the solution of thionine for the electrode system of ZSM-5/P and HZSM-5/P are −0.335 and −0.407 V, respectively. Thus, thionine dye molecules incorporated into the zeolites can be reduced more easily with respect to solution of thionine. In various electrolyte solutions, the midpoint potentials remains constant, but the midpoint potential of the thionine-zeolite electrodes depends on the solution pH. Influence of the pH of the solution on the midpoint potential of an immobilized dye reveals that thionine molecules are accessible to protons. This property is ascribed to the formation of mesopores in the structure of our zeolites suffering from a calcination step. Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 794–800. The text was submitted by the authors in English  相似文献   

19.
Physicochemical and catalytic properties of phosphorus and boron modified HZSM-5 zeolites treated with 100% steam at 673K were investigated.The acidity and distribution of acidic sites were studied by infrared spectroscopy using pyridine as probe molecule and temperature programmed desortion (TPD) of ammonia.The structure of the samples was characterized by XRD,and the textural properties of the catalysts were determined by nitrogen isothermal adsorption-desorption measurements and scanning electron microscopy(SEM).The XRD results show that the modified samples have no novel crystalline phase,indicating a high dispersion of phosphorus and boron species.After treatment,the microporous volume and surface area of the samples markedly decrease,implying the bolockage of the channel.The nitrogen adsorption-desorption measurements suggest that the isothermal type of all samples is a combination of isothermal type Ⅰ and Ⅳ,and all hysteresis loops resemble the H4-type in the IUPAC classification.The total acidity of the modified samples,determined by pyrldine adsorption IR and TPD of ammonia,decreases in contrast to that of the parent HZSM-5.The conversion of n-heptane over P and B steammodified HZSM-5 is higher than that of P and B-modified HZSM-5 zeolites but lower than that of the parent HZSM-5.  相似文献   

20.
The partitioning of ethylbenzene between poly(ethylene glycol) (PEG) and supercritical carbon dioxide was studied at 308.15, 328.15 and 348.15 K and 10, 15.5 and 20 MPa with PEG-400, 600 and 900 using Monte Carlo molecular simulation. The effect of a cosolvent was also studied with either 5% ethane or 5% n-octane added. Ethylbenzene favored the supercritical phase most when the density was highest, and while ethane had little effect, the addition of n-octane increased the amount of solute dissolved in carbon dioxide. Increasing polymer molecular weight led to more solute in the PEG-rich phase. This coincides with a higher amount of dissolved carbon dioxide that preferentially solvates ethylbenzene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号