首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The adsorption of colored compounds from the textile dyeing effluents of Bangladesh on granulated activated carbons produced from indigenous vegetable sources by chemical activation with zinc chloride was studied. The most important parameters in chemical activation were found be the chemical ratio of ZnCl2 to feed (3:1), carbonization temperature (450-465 °C) and activation time (80 min). The adsorbances at 511 nm (red effluent) and 615 nm (blue effluent) were used for color estimation. It is established that at optimum temperature (50 °C), time of contact (30-40 min) and adsorbent loading (2 g l−1), activated carbons developed from Segun saw-dust and water hyacinth showed substantial capability to remove coloring materials from the effluents. It is observed that adsorption of reactive dyes by all sorts of activated carbons is higher than disperse dyes. It is explained that activated carbon, because of its acidic nature, can better adsorb reactive dye particles containing large number of nitrogen sites and -SO3Na group in their structure. The use of carbons would be economical, as saw-dust and water hyacinth are waste products and abundant in Bangladesh.  相似文献   

2.
《印度化学会志》2023,100(1):100864
In this study, the aim was to produce the activated carbon from green coffee for use in liquid phase applications with adding zinc borate which was a boron chemical. Phosporic acid was chosen as the chemical activation material and different reaction parameters (percent of phosporic acid, amount of zinc borate) were tested during the process of chemical activation. The experimental sets were determined by using Taguchi optimization method and optimal conditions were obtained. Taguchi optimization method was preferred to reach optimum process parameters by using time and material in the most beneficial way. The effects of the process parameters (microwave drying time, temperature of carbonization and duration of carbonization) were investigated to determine the optimal sample. The characteristic properties of the obtained activated carbons were determined with Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller surface area analysis (BET), Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The samples of activated carbon produced were used for determination of the iodine number and the adsorption of heavy metal Cr (VI) ions from solution. Analysis and studies of adsorption showed that activated carbon was produced successfully. The activated carbon was evaluated in liquids phase applications and Langmuir isotherm was found more applicable and experimental data was proper with the second-order kinetic model.  相似文献   

3.
Two commercial activated carbons with differences in their superficial chemistry, one granular and the other pelletised, were modified for use in phenol and 2,4-dinitrophenol adsorption. In this paper, changes to the activated carbon surface will be evaluated from their immersion calorimetry in water and benzene, and they will then be compared with Area BET, chemical parameters, micropore size distributions and hydrophobicity factors of the modified activated carbons. The activated carbons were modified using 60 % solutions of phosphoric acid (H3PO4), nitric acid (HNO3), zinc chloride (ZnCl2) and potassium hydroxide (KOH); the activated carbon/solution ratio was 1:3 and impregnation was conducted 291 K for a period of 72 h before samples were washed until a constant pH was obtained. Water immersion calorimetry showed that the best results were obtained from activated carbons modified with nitric acid, which increased from ?10.6 to ?29.8 J g?1 for modified granular activated carbon, and ?30.9 to ?129.3 J g?1 for pelletised activated carbon. Additionally, they showed the best results in phenol and 2.4-dititrophenol adsorption. Those results indicate that impregnation with nitric acid under the employed conditions could generate a greater presence of oxygenated groups on their surface, which favours hydrogen bond formation and the increased adsorption of polar compounds. It should also be noted that immersion enthalpy in benzene for modified activated carbon with nitric acid is the method with the lowest value, which is consistent with the increased presence of polar groups on its surface. Regarding hydrophobicity factors, it was observed that granular carbons modified with nitric acid and potassium hydroxide have the lowest ratios, indicating greater interaction with water.  相似文献   

4.
Pore development and the formation of oxygen functional groups were studied for activated carbon prepared from bamboo (Bambusa bambos) using a two-step activation with CO2, as functions of carbonization temperature and activation conditions (time and temperature). Results show that activated carbon produced from bamboo contains mostly micropores in the pore size range of 0.65 to 1.4 nm. All porous properties of activated carbons increased with the increase in the activation temperature over the range from 850 to 950 °C, but decreased in the temperature range of 950 to 1000 °C, due principally to the merging of neighboring pores. The increase in the activation time also increased the porous properties linearly from 60 to 90 min, which then dropped from 90 to 120 min. It was found that the carbonization temperature played an important role in determining the number and distribution of active sites for CO2 gasification during the activation process. Empirical equations were proposed to conveniently predict all important porous properties of the prepared activated carbons in terms of carbonization temperature and activation conditions. Oxygen functional groups formed during the carbonization and activation steps of activated carbon synthesis and their contents were dependent on the preparation conditions employed. Using Boehm’s titration technique, only phenolic and carboxylic groups were detected for the acid functional groups in both the chars and activated carbons in varying amounts. Empirical correlations were also developed to estimate the total contents of the acid and basic groups in activated carbons in terms of the carbonization temperature, activation time and temperature.  相似文献   

5.
The porous activated carbons (ACs) were prepared from corn grains through physical (steam) and chemical–physical (H3PO4‐steam) activations. The effects of steam activation temperature (700–900 °C) on pore development, surface roughness, and energetic heterogeneity were investigated in both activations. Also, the effect of prior carbonization on H3PO4‐steam activation was studied. The physical properties, surface fractal dimensions, and adsorption energy distributions of ACs were determined from nitrogen adsorption–desorption isotherm data. Both physical and chemical–physical activations show that the AC with higher surface area, relatively smoother surface, and energetically heterogeneous surface could be produced at a maximum steam activation temperature (900 °C). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Activated carbon samples from coconut shells (Brazilian coconut species “Coco da Baía”) were prepared by chemical activation with phosphoric acid as the activating agent. Samples were characterized by nitrogen adsorption isotherms at 77 K. Some samples were randomly chosen in order to perform methane adsorption experiments under pressures between 1 and 60 bar at 303 K. A close relationship between surface area, micropore volume and methane adsorption capacity for carbons prepared from the same starting material was observed. The highest methane storage capacity in the tested samples was found to be 95 v/v at 303 K and 35 bar, which is comparable to results obtained for commercial samples indicated for this application. A moderate concentration of phosphoric acid (around 35%) seems to favor high surface areas, micropore volumes and, hence, gas storage capacity. The inclusion of an acid wash step before carbonization and the use of inert gas flow during carbonization also seem to enhance the development of porosity. This result suggests that activated carbons prepared from “Coco da Baía” by chemical activation with phosphoric acid have potential to be used as a storage media for natural gas.  相似文献   

7.
Different mesoporous activated carbons were prepared by both chemical and physical activation processes and were examined for methane uptake in the presence of water.Methane isotherms were obtained at ...  相似文献   

8.
The immersion enthalpies in benzene, cyclohexane, water, and phenol aqueous solution with a concentration of 100 mg L?1 are determined for eight activated carbons obtained from peach seeds (Prunus persica) by thermal activation with CO2 at different temperatures and times of activation. The results obtained for the immersion enthalpy show values between ?4.0 and ?63.9 J g?1 for benzene, ?3.0 and ?47.9 J g?1 for cyclohexane, ?10.1 and ?43.6 J g?1 for water, and ?11.1 and ?45.8 J g?1 for phenol solution. From nitrogen adsorption isotherms, the surface area, micropore volume, and average pore diameter of the activated carbons were obtained. These parameters are related with the immersion enthalpies, and the obtained trends are directly proportional with two first parameters in the nonpolar solvents, which is a behavior of microporous activated carbons with hydrophobic character. Phenol adsorption from aqueous solution on activated carbons is proportional to their surface area and their immersion enthalpy in the solution.  相似文献   

9.
The templated porous carbons were prepared from sucrose by one-pot method. In this method in which the pre-synthesis of the hard template is eliminated, the porous carbons were produced by organic-inorganic self-assembly of sucrose, tetraethyl ortosilicate (TEOS), Pluronic P123 and n-butanol in an acidic medium, and subsequent carbonization. The synthesis parameters such as sucrose amount, TEOS molar ratio and carbonization temperature were evaluated for describing their effects on the pore structures of the synthesized carbons. The prepared porous carbons were characterized by N2 adsorption, thermogravimetric analysis (TGA), Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The carbon dioxide adsorption uptakes of the obtained porous carbons were determined at 1 bar and 273 K. The templated carbon obtained with the lowest TEOS molar ratio exhibited the highest BET surface area of 1289 m2/g and micropore volume of 0.467 cm3/g, and showed the highest CO2 uptake of 2.28 mmol/g.  相似文献   

10.
Activated carbons from bagasse fly ash (BFA) were prepared by one step chemical activation using ZnCl2 as activating agent, or combination method of chemical with CO2 physical activation (physicochemical activation). The development of porosity was studied in correlation with the method of activation, activation temperature, and also the chemical weight ratio. A typical sample by the combination method at 600 °C and weight ratio of ZnCl2:BFA = 2 exhibited micropore volume of 0.528 cc/g, mesopore volume of 0.106 cc/g and surface area of 1200 m2/g. For determining the adsorption capacity of the carbon samples in solutions, phenol and methylene blue equilibrium adsorption experiments were conducted. The properties and adsorption capacity of the synthesized activated carbons has been compared to commercial activated carbon (Norit® SX Plus).  相似文献   

11.
 Several different activated carbons have been prepared, from olive stones, solvent-extracted olive pulp and peach stones. Both a two-step procedure, carbonization followed by steam activation, and a single-step procedure, carbonization and activation in a single stage, have been applied at temperatures from 770 to 850 °C. The effect of such variables as heating rate during carbonization and activation, final temperature, soaking time and starting material, on the development of pore structure, have been investigated. Porosity and surface area have been evaluated by adsorption of nitrogen at 77 K. Mesoporosity and macroporosity were determined by mercury porosimetry. Scanning electron microscopy and X-ray diffraction analysis revealed useful information on the surface texture and structure respectively. Two-step physical activation of olive stones, with steam, yielded mesoporous structures. Extended time of activation favoured mesopore development. The parent olive stones showed the most homogeneous surfaces. All the activated carbons prepared were amorphous. Their well-developed porosity and large surface area combined with their chemical composition render the activated carbons from agricultural by-products an attractive product.  相似文献   

12.
Were determined the immersion enthalpy in benzene and water for 24 carbonaceous materials, granular activated carbon and activated carbon monoliths prepared from African palm stone by chemical activation with H3PO4, ZnCl2 and CaCl2 solutions. The immersion enthalpies in benzene and water were exothermic, in accordance with a surface process that takes place between the solid and liquid. Benzene enthalpies for this set of solids were ?20.26 and ?181.1 J g?1 and water enthalpies were between ?7.42 and ?67.01 J g?1. The textural and chemical surface properties of the activated carbons were related to the immersion enthalpies. Since the evaluation of the porous structure was made with non-polar liquids with which the solid does not have a specific interaction, immersion enthalpy was proportional to the surface area accessible to liquid molecules, which was calculated from the enthalpic determinations based on the assumption of the existence of a direct relationship between the immersion enthalpy and the total area of the solid accessible to liquid molecules. The hydrophobic factor was calculated by dividing the immersion enthalpy in benzene and the immersion enthalpy in water; this is related to the acidity, basicity and hydrophobicity of the activated carbons.  相似文献   

13.
Nutshells of Sterculia alata, a forest waste, were used to prepare activated carbons by zinc chloride activation under four different activation atmospheres, to develop carbons with substantial capability, and to adsorb phenol from wastewater. Experiments were carried out at different chemical ratios (activating agent/precursor). Effect of carbonization temperature and time are the important variables, which had significant effect on the pore structure of carbon. Developed activated carbon was characterized by SEM analysis. Pore volume and surface area were estimated by Hg porosimetry and BET surface area analyses. The carbons showed surface area and micropore volumes of around 712 m2/g and 0.542 cm3/g, respectively. The activated carbon developed shows substantial capability to adsorb phenol from wastewater. The kinetic data were fitted to the models of intraparticle diffusion, pseudo-second order, and Lagergren model and followed more closely the pseudo-second-order chemisorption model. The isotherm equilibrium data were well-fitted by the Langmuir and Freundlich models. The maximum uptake of phenol was found at pH 3.5.  相似文献   

14.
The adsorption of mercury from a single/multi-solute aqueous solution by activated carbon (AC) prepared from cherry stones (CS) by chemical activation with H3PO4, ZnCl2 or KOH is studied. Three series of AC (i.e., P, H3PO4; Z, ZnCl2; K, KOH) were prepared by controlling the impregnation ratio and carbonization temperature. The textural characterization of AC was carried out by gas adsorption, mercury porosimetry and density measurements. The surface chemistry was analyzed by the pH of the point of zero charge (pHzpc), FT-IR spectroscopy and Boehm’s method. Experiments of mercury adsorption were conducted by the batch method, using aqueous solutions of mercury and of mercury, cadmium and zinc without pH adjustment. The ACs possess a wide range of pore volumes and sizes. Their microporosity is usually well developed. The meso- and macropore volumes are higher for the P carbons and K carbons, respectively. BET surface areas as a rule range between 1000 and 2000 m2?g?1. The pHzpc is much lower for the P carbons. The content of acidic oxygen surface groups is lower for the K carbons, whereas the content of basic groups is higher for these carbons. The kinetics of the adsorption process of mercury is faster for ACs with high volumes of large size pores. However, the surface groups have a marked unfavorable influence on the kinetics. The pseudo-second order rate constant (k2×10?3, g/mol?h) is higher by the order Z-4-800 (67.69)>K-3-800 (43.45)>P-3.44-400 (36.98). The incorporation of zinc and cadmium to the mercury solution usually decelerates the adsorption process for the P carbons and Z carbons and accelerates it for the K carbons. The amount adsorbed of mercury is much larger for the K carbons than for the other ACs. For the Z carbons, competition effects of zinc and cadmium on the adsorption of mercury are negligible, which indicates that mercury adsorbs specifically on surface active sites of these adsorbents.  相似文献   

15.
A series of activated carbons with high mesoporous ratio were prepared by KOH reactivation based on activated carbon as the precursor. As the KOH/AC mass ratio was increased to 4:1, the mesoporous ratio increases from 60% to 76%, and the average pore size from 2.23 to 3.14?nm. Moreover, the specific capacitance for the activated carbon in ionic liquid 1-ethyl-3-methylmidazolium tetrafluoroborate ([EMIm]BF4) can reach the maximum value of 189?F?g?1 (8.0???F?cm?2). In addition, the decrease of specific capacitance for activated carbons by KOH reactivation with current density increase shows two regimes, suggesting that activated carbons with high mesoporous ratio are much fit for charge?Cdischarge at larger current density.  相似文献   

16.
A technology for obtaining carbonaceous adsorbents by physical and chemical activation of waste materials from coffee industry is described. The effect of pyrolysis temperature and type of activation procedure on the textural parameters, acid–base character of the surface and sorption properties of activated carbons has been tested. The resulting carbons were characterized by low-temperature nitrogen sorption, determination of pH and the number of surface oxygen groups. The sorption properties of the activated carbons obtained were characterized by evaluation of nitrogen dioxide adsorption in dry and wet conditions. The final products were adsorbents of specific surface area ranging from 5 to 2,076 m2/g and pore volume from 0.03 to 1.25 cm3/g, showing very diverse acidic–basic character of the surface. The results obtained in our study have proved that a suitable choice of the pyrolysis and activation procedure for coffee industry wastes permits production of adsorbents with high sorption capacity of nitrogen dioxide, reaching to 44.5 and 84.1 mg NO2/g in dry and wet conditions, respectively.  相似文献   

17.
Eight new carbon adsorbents derived from polyimide copolymer of 4,4'-bis (maleimododiphenyl)methane and divinylbenzene (BM-DVB) were prepared using a variety of methods. The influence of carbonization, steam or phosphoric acid activation on chemical structure and texture of the carbons has been studied. Adsorption-desorption properties of the carbons were estimated based on recovery determinations for, phenol, its chlorinated derivatives and naphthalene from aqueous solution. The results showed that the best adsorption-desorption properties have polymer-based carbons obtained by high temperature steam activation.Revised: 13 February 2006 and 3 April 2006  相似文献   

18.
电化学电容器已经成为极具潜力的可满足高功率需求的储能系统器件. 多孔炭具有大比表面积、高导电性、化学惰性、廉价及可调孔结构等优势, 因此成为电化学电容器最为常用的电极材料. 本文报道由微孔棒状羟基磷灰石为模板及蔗糖为碳源合成的新型具有层次孔道结构的孔炭材料的电化学电容器的性能. 采用X射线衍射分析仪、扫描电子显微镜、透射电子显微镜、X射线光电子能谱及BET表面分析仪表征了合成的多孔炭的形貌及表面特性. 采用循环伏安法、交流阻抗图谱分析及恒流充放电评价多孔炭材料在1 mol·L-1硫酸中的电化学电容性能. 多孔炭具有高的比表面积(719.7 m2·g-1)和大的孔容(1.32 cm3·g-1), 其无序的孔道由任意分布的微孔、坍塌的中孔及类模板形状的相互交织的棒状中孔组成. 随着炭化温度的增加, 微孔及棒状中孔的密度随之降低, 在炭化温度高达900℃时, 孔径分布图上出现了三个峰. 正是由于这些特殊的结构特征, 由900℃炭化得到的多孔炭制成的电极展示出很好的电化学电容性能.  相似文献   

19.
Upfield substituent-induced 13C chemical shifts for aryl carbons of polymethyl substituted benzenes, phenols, anilines and thiophenols were investigated as a function of the proximity between substituents X and CH3 (X = CH3, NH2, OH and SH). The results indicate that the induced shifts of the substituted aryl carbons are, in general, independent of the polar substituent but depend on the number of adjacent substituted aryl carbons. A ?2.0 ppm upfield shift was found for a substituted aryl carbon adjacent to one substituted aryl carbon and a ?3.8 ppm upfield shift for a substituted aryl carbon bound by two substituted aryl carbons. It is suggested that the near additivity of the upfield shifts is the result of changes in the bond order between the aromatic ring carbons in the region of the substituted aryl carbons due to distortion of the ring. The 13C chemical shifts of the methyl substituents for methyl substituted phenols, anilines and thiophenols were determined, and it was found that the values could be predicted from the additivity parameters reported for the analogous methylbenzenes plus an additional pair-interaction term associated with the through-space electronic influence of the heteroatom.  相似文献   

20.
Activated carbons were prepared from old newspaper and paper prepared from simulated paper sludge by chemical activation using various alkali carbonates and hydroxides as activating reagents and also by physical activation using steam. In the chemical activation, the influence of oxidation, carbonization, and activation on the porous properties of the resulting activated carbons was investigated. The specific surface areas (S(BET)) of the activated carbons prepared by single-step activation (direct activation without oxidation and carbonization) were higher than those resulting from two-step activation (oxidation-activation and carbonization-activation) and three-step activation (oxidation-carbonization-activation) methods. The S(BET) values were strongly dependent on the activating reagents and the activating conditions, being >1000 m(2)/g using K(2)CO(3), Rb(2)CO(3), Cs(2)CO(3), and KOH as activating reagents but <1000 m(2)/g using Li(2)CO(3), Na(2)CO(3), and NaOH. These differences in S(BET) values are suggested to be related to the ionic radii of the alkalis used as activating reagents. The microstructures of the higher S(BET) samples show a complete loss of fiber shape but those of the lower S(BET) samples maintain the shape. In the physical activation, the porous properties of the activated carbons prepared by the single-step method were examined as a function of the production conditions such as activation temperature, activation time, steam concentration, and flow rate of the carrier gas. The maximum S(BET) and total pore volume (V(P)) were 1086 m(2)/g and 1.01 ml/g, obtained by activation at 850 degrees C for 2 h, flowing 20 mol% of steam in nitrogen gas at 0.5 l/min. A correlation was found between S(BET) and the yield of the product, the maximum S(BET) value corresponding to a product yield of about 10%. This result is suggested to result from competition between pore formation and surface erosion. Compared with chemically activated carbons using K(2)CO(3), the porous properties of the physically activated carbons have lower S(BET) and V(P) values because of the smaller size and lower volume of their micropores. On the other hand, they retain the original fiber shape and the paper sheet morphology after activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号