共查询到16条相似文献,搜索用时 46 毫秒
1.
利用准分子激光等离子体技术,在紫外预电离XeCl准分子激光器上获得了最短1.58 ns的短脉冲激光输出。实验中分析了聚焦到薄膜表面的光束能量密度对所产生的等离子体密度的影响,并对不同等离子体密度及维持时间情况下脉冲压缩效果进行了讨论,给出了激光器谐振腔在稳定腔及非稳腔两种工作方式下的实验结果。激光器在稳定腔工作时,脉宽可压缩至2.87 ns;采用非稳腔结构时,在脉冲能量不变情况下减小聚焦光斑面积,提高入射到薄膜表面的能量密度,得到了最短1.58 ns的短脉冲激光输出。该技术适用于任何其它准分子器件。 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Copper nanoparticles (Cu NPs) were prepared by different chemical methods possessing different sizes. While, silver nanoparticles (Ag NPs) were prepared by borohydride reduction method. The influences the changes in sizes of Ag NPs and Cu NPs were demonstrated by the absorption spectra. When Ag NPs and Cu NPs irradiated with 193 and 308 nm excimer laser, respectively; the maximum absorption decreased as the number of pulses increased up to 10 thousands pulse; due to the size reduction. The TEM photography gives good criteria about the size reduction process. Moreover, the mechanism of photofragmentation was described. 相似文献
12.
The influence of temporal pulse shaping on plasma plume generated by ultrafast laser irradiation of aluminum is investigated. Time resolved plasma emission spectroscopy is coupled with a temporal shaping procedure in a closed loop. The ionic emission is enhanced relative to the neutral one via an adaptive optimization strategy. The plasma emission efficiency in case of optimized and ultrashort temporal shapes of the laser pulses are compared, evidencing an enhancement of the ionization degree of the plasma plume. Simplified temporal shapes of the femtosecond laser pulses are extracted from the optimized shape and their corresponding effect on laser induced plasma emission is discussed. 相似文献
13.
针对激光烧蚀半导体材料Ge初期的特点,建立了1维的热传导和流体动力学模型。对波长为248 nm、脉宽为17 ns、峰值功率密度为4×108 W/cm2的KrF脉冲激光在133.32 Pa氦气环境下烧蚀Ge产生等离子体的特性进行了数值模拟。结果表明:单个激光脉冲对靶的烧蚀深度达到55 nm,蒸气膨胀前端由于压缩背景气体产生压缩冲击波, 波前的速度最大,温度很高。从不同时刻的电离率分布图中得出,在靶面附近区域,Ge的1阶电离始终占优势;在中心区域,脉冲作用时间内,Ge的2阶电离率比1阶电离率大,脉冲结束后,Ge的2阶电离率下降,1阶电离率逐渐变大。 相似文献
14.
Hedieh Pazokian Alexandros Selimis Emmanuel StratakisMahmoud Mollabashi Jalal BarzinSaeid Jelvani 《Applied Surface Science》2011,258(1):169-175
Polyethersulfone (PES) films were processed with KrF laser irradiation of different pulse durations (τ). Scanning electron microscopy (SEM) and Raman spectroscopy were employed for the examination of the morphology and chemical composition of the irradiated surfaces, respectively. During ablation with 500 fs and 5 ps pulses, localized deformations (beads), micro-ripple and conical structures were observed on the surface depending on the irradiation fluence (F) and the number of pulses (N). In addition, the number density of the structures is affected by the irradiation parameters (τ, F, N). Furthermore, at longer pulse durations (τ = 30 ns), conical structures appear at lower laser fluence values, which are converted into columnar structures upon irradiation at higher fluences. The Raman spectra collected from the top of the structures following irradiation at different pulse durations revealed graphitization of the ns laser treated areas, in contrast to those processed with ultra-short laser pulses. 相似文献
15.
S. Coutanson 《Applied Surface Science》2006,252(13):4502-4505
In this work was investigated numerically and experimentally a simple laser doping method employing borosilicate (BSG) glass films as dopant sources which are deposited onto Si by the spin-coating technique. Both short (20 ns) and long (200 ns) pulse duration Excimer laser beams were used to deposit a large amount of energy in short time onto the near-surface region. Under suitable conditions, the irradiation leads to surface melting and dopant incorporation by liquid phase diffusion from the surface. Boron distribution profiles in the two-pulse duration regimes were studied as well as their electrical properties, and the junction formation of less than 25 nm in depth was demonstrated. 相似文献
16.
This paper demonstrates the unique and exceptional capability of excimer laser micromachining in fabricating aspheric microlenses with precise surface profile control. A newly developed laser scanning method is introduced for machining refractive types of microlenses, which have pre-designed surface profiles aiming at minimizing the optical focal spot sizes. The machining accuracy and machined surface roughness are examined experimentally, and very good results are obtained. Optical testing on the fabricated aspheric microlenses shows significant improvement in focusing capability and the focal spot sizes are approaching optical diffraction limits. The proposed excimer laser micromachining method is flexible, versatile, and accurate, hence can be very useful and powerful in machining 3D microstructures of complex profiles and demanding profile accuracy. 相似文献