首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
An accurate modeling of metal-to-ligand-charge-transfer (MLCT) and metal-centered (MC) excited state energies is key to predict the photoinduced response in transition metal complexes (TMCs). Herein, the importance of the ground state and excited state reference geometries is addressed for three-prototype d6 pseudo-octahedral TMCs, each displaying a different potential energy landscape of MLCT versus MC relative stabilities. Several functionals are used within the time-dependent density functional theory (TDDFT), as well as multireference wave-function theory (MS-CASPT2), applied to [Mn(im)(CO)3(phen)]+, [Ru(im)2(bpy)2]2+, and [Re(im)(CO)3(phen)]+, (im: imidazole, bpy: bypiridine, phen: phenantroline). The results revel that TDDFT is robust except when using B3LYP functional for first-row d6 TMCs. In contrast, MS-CASPT2 calculations are strongly biased in those cases with competitive MLCT/MC states. The results reinforce the reliability of B3LYP to describe the excited states in d6 TMCs, but question the validity of assessing the density functional theory (DFT)/TDDFT performance via direct comparison with MS-CASPT2 performed at the same DFT reference geometry as a standard strategy. © 2019 Wiley Periodicals, Inc.  相似文献   

3.
Square-planar NiII complexes are interesting as cheaper and more sustainable alternatives to PtII luminophores widely used in lighting and photocatalysis. We investigated the excited-state behavior of two NiII complexes, which are isostructural with two luminescent PtII complexes. The initially excited singlet metal-to-ligand charge transfer (1MLCT) excited states in the NiII complexes decay to metal-centered (3MC) excited states within less than 1 picosecond, followed by non-radiative relaxation of the 3MC states to the electronic ground state within 9–21 ps. This contrasts with the population of an emissive triplet ligand-centered (3LC) excited state upon excitation of the PtII analogues. Structural distortions of the NiII complexes are responsible for this discrepant behavior and lead to dark 3MC states far lower in energy than the luminescent 3LC states of PtII compounds. Our findings suggest that if these structural distortions could be restricted by more rigid coordination environments and stronger ligand fields, the excited-state relaxation in four-coordinate NiII complexes could be decelerated such that luminescent 3LC or 3MLCT excited states become accessible. These insights are relevant to make NiII fit for photophysical and photochemical applications that relied on PtII until now.  相似文献   

4.
5.
Two anomalous emission bands in the fluorescence spectrum of 3,4-benzpyrene, dissolved in 2-methylpentane, have been studied as a function of temperature. These emissions originate from the second excited singlet state S2, and from a vibrationally excited S1 (S*1) respectively. From the temperature dependence of the relative yield and the decay time of the S*1 emission it can be concluded that the vibrational relaxation of this state is hampered. The rate constant for this relaxation process is smaller that 4 > 62;x 107 sec?1.  相似文献   

6.
The ground state wavefunction of the V4+ ion in different single crystals has been estimated using different spinhamiltonian constants obtained from ESR studies. The ground state wavefunction is the dxy type with a slight admixture of the excited states dx2y2, dxz and dyz. The hyperfine interaction parameter has also been determined and the nature of the chemical binding in complexes has been explained on the basis of this parameter.  相似文献   

7.
Hideyuki Tatsuno  Kasper S. Kjær  Kristjan Kunnus  Tobias C. B. Harlang  Cornelia Timm  Meiyuan Guo  Pavel Chàbera  Lisa A. Fredin  Robert W. Hartsock  Marco E. Reinhard  Sergey Koroidov  Lin Li  Amy A. Cordones  Olga Gordivska  Om Prakash  Yizhu Liu  Mads G. Laursen  Elisa Biasin  Frederik B. Hansen  Peter Vester  Morten Christensen  Kristoffer Haldrup  Zoltán Németh  Dorottya Sárosiné Szemes  Éva Bajnóczi  György Vankó  Tim B. Van Driel  Roberto Alonso-Mori  James M. Glownia  Silke Nelson  Marcin Sikorski  Henrik T. Lemke  Dimosthenis Sokaras  Sophie E. Canton  Asmus O. Dohn  Klaus B. Møller  Martin M. Nielsen  Kelly J. Gaffney  Kenneth Wärnmark  Villy Sundström  Petter Persson  Jens Uhlig 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(1):372-380
Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeIINHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3MLCT state, from the initially excited 1MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3MC state, in competition with vibrational relaxation and cooling to the relaxed 3MLCT state. The relaxed 3MLCT state then decays much more slowly (7.6 ps) to the 3MC state. The 3MC state is rapidly (2.2 ps) deactivated to the ground state. The 5MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.  相似文献   

8.
Pincer PdII–isocyanide complexes are described that display intermolecular interactions and emissive 3MMLCT excited states in aggregation state(s) at room temperature. The intermolecular PdII?PdII and ligand–ligand interactions drive these complexes to undergo supramolecular polymerization in a living manner. Comprehensive spectroscopic studies reveal a pathway with a kinetic trap that can be modulated by changing the counteranion and metal atom. The PdII supramolecular assemblies comprise two different aggregation forms with only one to be emissive. DFT/TDDFT calculations lend support to the MMLCT absorption and emission of these pincer PdII–isocyanide aggregates.  相似文献   

9.
The reactions of vanadocene and its halides Cp2VCl and Cp2VCl2 with R3MNCX (M  Sn, Si, X  O, S) and R2M(NCX)2 in various molar ratios have been studied. The reactions proceed either by an exchange of groups, with no change in the oxidation state of vanadium, or by an oxidative addition of pseudohalide ligand: VII → VIII; VIII → VIV. Oxidative addition results in the formation of (R3M)2 or gaseous hydrogen (in the reaction with HCl) in the reaction products.We have prepared the first ever monomeric and readily oxidisable d2-complexes of VIII of Cp2VNCX-type and asymmetric d1-complexes of Cp2V(Cl)NCX type, which, although rather stable in air, undergo disproportionation into symmetric d1-complexes on heating. In transmetallation reactions the ligand activity is found to increase in the order C1 < NCO < NCS. The complexes were characterised by GLC analysis, IR and ESR spectroscopy. A general scheme for the disproportionation reaction of asymmetric complexes of vanadocene is supported by differential thermal analysis data.  相似文献   

10.
Hideyuki Tatsuno  Kasper S. Kjr  Kristjan Kunnus  Tobias C. B. Harlang  Cornelia Timm  Meiyuan Guo  Pavel Chbera  Lisa A. Fredin  Robert W. Hartsock  Marco E. Reinhard  Sergey Koroidov  Lin Li  Amy A. Cordones  Olga Gordivska  Om Prakash  Yizhu Liu  Mads G. Laursen  Elisa Biasin  Frederik B. Hansen  Peter Vester  Morten Christensen  Kristoffer Haldrup  Zoltn Nmeth  Dorottya Srosin Szemes   va Bajnczi  Gyrgy Vank  Tim B. Van Driel  Roberto Alonso‐Mori  James M. Glownia  Silke Nelson  Marcin Sikorski  Henrik T. Lemke  Dimosthenis Sokaras  Sophie E. Canton  Asmus O. Dohn  Klaus B. Mller  Martin M. Nielsen  Kelly J. Gaffney  Kenneth Wrnmark  Villy Sundstrm  Petter Persson  Jens Uhlig 《Angewandte Chemie (International ed. in English)》2020,59(1):364-372
Iron N‐heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub‐ps X‐ray spectroscopy study of an FeIINHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3MLCT state, from the initially excited 1MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3MC state, in competition with vibrational relaxation and cooling to the relaxed 3MLCT state. The relaxed 3MLCT state then decays much more slowly (7.6 ps) to the 3MC state. The 3MC state is rapidly (2.2 ps) deactivated to the ground state. The 5MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition‐metal complexes for similar ultrafast decays to optimize photochemical performance.  相似文献   

11.
The expansion of d-orbitals as a result of metal-ligand bond covalence, the so-called nephelauxetic effect, is a well-established concept of coordination chemistry, yet its importance for the design of new photoactive complexes based on first-row transition metals is only beginning to be recognized. Until recently, much focus has been on optimizing the ligand field strength, coordination geometries, and molecular rigidity, but now it becomes evident that the nephelauxetic effect can be a game changer regarding the photophysical properties of 3d metal complexes in solution at room temperature. In CrIII and MnIV complexes with the d3 valence electron configuration, the nephelauxetic effect was exploited to shift the well-known ruby-like red luminescence to the near-infrared spectral region. In FeII and CoIII complexes with the low-spin d6 electron configuration, charge-transfer excited states were stabilized with respect to detrimental metal-centered excited states, to improve their properties and to enhance their application potential. In isoelectronic (3d6) isocyanide complexes of Cr0 and MnI, the nephelauxetic effect is likely at play as well, enabling luminescence and other favorable photoreactivity. This minireview illustrates the broad applicability of the nephelauxetic effect in tailoring the photophysical and photochemical properties of new coordination compounds made from abundant first-row transition metals.  相似文献   

12.
Transition metal complexes are vital components in a wide range of photooptical applications; these range from targeted drug delivery to devices for the conversion of solar energy to electrical and/or stored chemical energy. Metal centered (MC) ligand field excited states play important roles in the photophysics of those complexes having partially filled d-orbitals. This review offers a broad perspective on key investigations that have characterized the chemistry and physics of MC excited states in d3 and d6 transition metal complexes. It will also illustrate the impact of these excited states on various photooptical applications and highlight efforts to understand, control, and tune these MC excited states in the context of such applications.  相似文献   

13.
The reaction of 2,2′:4,4′′:4′,4′′′‐quaterpyridyl (qtpy), with d6 ruthenium(II) (RuII), and rhenium(I) (ReI) metal centers has been investigated. The pendant pyridyl groups on the products have also been methylated to produce a second series of complexes containing coordinated Meqtpy2+. The absorption spectra of the complexes are dominated by intraligand and charge‐transfer bands. The ruthenium(II) complexes display broad unstructured luminescence consistent with emission from a Ru(d)→diimine(π*) manifold in acetonitrile solutions. In aqueous solutions, their emissions are weaker and the lifetimes are shorter. This effect is particularly acute for complexes incorporating coordinated dipyridylpyrazine, dppz, ligands. Although the emission of the ruthenium(II) complexes containing Meqtpy2+ is generally shorter than their qtpy analogs, it is notable that solvent‐dependent effects are much less intense. The rhenium(I) complexes also display broad unstructured luminescence but, compared with the ruthenium(II) systems, they have a relatively short lifetime in acetonitrile. Electrochemical studies reveal that all of the RuII complexes display chemically reversible metal‐based oxidations. ReI complexes only display irreversible metal‐based oxidations. In most cases, the reduction processes were not fully chemically reversible. The electrochemical and optical studies reveal that the nature of the lowest excited state of these complexes—particularly, the systems incorporating dppz—is highly dependent on the nature of the coordinated ligands. Calculations indicate that, although the excited state of most of the complexes is centered on the qtpy or Meqtpy2+ ligands, the excited state of the complexes containing dppz ligands is switched away from the dppz by qtpy methylation. A crystallographic study on one of the dicationic ruthenium(II) structures reveals that it forms an inclusion complex with benzene.  相似文献   

14.
采用基于第一性原理的密度泛函理论对单核和双核三联吡啶Pt(II)配合物[Pt(trpy)C≡CH] (1)和[Pt(trpy)C≡ (2)的基态和激发态以及光谱性质进行了系统研究. 结果揭示了双体配合物中Pt—Pt间距离在激发态时明显短于基态时的距离, 而且双体聚合后最低能吸收和发射波长相对单体配合物发生了明显红移, 这种激发的本质被指认为是来自于[dσ*(dδ*π*)]的MMLCT (metal-to-metal-to-ligand charge transfer)电荷转移跃迁. 另外, 对研究的配合物, 用VWN (Vosko-Wilk-Nusair)泛函优化得到的几何和用SAOP(轨道势的统计平均)计算的光谱能量和实验值符合得很好, 能够准确反映实验现象.  相似文献   

15.
16.
The orbital nature of excited states of organometallic π-complexes of early transition metals of the third-fifth periods with the d 0 electronic configuration was surveyed, and their photophysical characteristics were discussed. Examples of long-lived luminescence generated by ligand-to-metal charge transfer in liquid solutions at room temperature were thoroughly considered. Regularities of nonradiative triplet-triplet energy transfer from aromatic molecules and d 0 metallocene complexes of Group 4B transition metals to unsaturated hydrocarbons were examined.  相似文献   

17.
A theoretical investigation on the luminescence efficiency of a series of d8 transition‐metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M‐salen]n complexes (salen=N,N′‐bis(salicylidene)ethylenediamine; M=Pt, Pd (n=0); Au (n=+1)) in acetonitrile solutions at room temperature: [Pt‐salen] is phosphorescent and [Au‐salen]+ is fluorescent, but [Pd‐salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron‐withdrawing groups at the 4‐position of the Schiff base ligand should widen the 3MLCT–3MC gap (MLCT=metal‐to‐ligand charge transfer and MC=metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding PdII Schiff base complex. Although it is experimentally proven that [Pd‐salph‐4E] (salph=N,N′‐bis(salicylidene)‐1,2‐phenylenediamine; 4E means an electron‐withdrawing substituent at the 4‐position of the salicylidene) displays triplet emission, its quantum yield is low at room temperature. The corresponding PtII Schiff base complex, [Pt‐salph‐4E], is also much less emissive than the unsubstituted analogue, [Pt‐salph]. Thus, a detailed theoretical analysis of how the substituent and central metal affected the photophysics of [M‐salph‐X] (X is a substituent on the salph ligand, M=Pt or Pd) was performed. Temperature effects were also investigated. The simple energy gap law underestimated the nonradiative decay rates and was insufficient to account for the temperature dependence of the nonradiative decay rates of the complexes studied herein. On the other hand, the present analysis demonstrates that inclusions of low‐frequency modes and the associated frequency shifts are decisive in providing better quantitative estimates of the nonradiative decay rates and the experimentally observed temperature effects. Moreover, spin–orbit coupling, which is often considered only in the context of radiative decay rate, has a significant role in determining the nonradiative rate as well.  相似文献   

18.
Metallocene alkyl complexes with d0 electron configuration and d8-configured square planar α-diimine late transition metal alkyl complexes show activity in both C−H activation through σ-bond metathesis and olefin insertion. Herein, we show by analysis of their M−CH3 13C chemical shift tensors that these reactions involve a π(M−C) interaction in the horizontal plane of the complex for both d0 and d8 systems. While in the case of d0 systems the interaction of an empty metal d-orbital and a filled carbon p-orbital causes partial alkylidene character of the M−C bond, the corresponding metal d-orbital is filled in d8 systems, thus generating a filled π*(M−C) orbital that increases the anionic character of the methyl group. This entails fundamentally different reaction mechanisms for d0 and d8 systems, which are reflected in the structures of the transition states: While d0 olefin insertion can be viewed as a [2+2] cycloaddition reaction, d8 olefin insertion rather resembles methyl group migration onto a positively polarized olefin, thus explaining the observed differences in regioselectivity. These findings are translated to σ-bond metathesis, a reaction which is isolobal to olefin insertion for both early and late transition metals.  相似文献   

19.
The effects of four d8 transition-metal complexes from Group 10 on the thermal, mechanical, optical, and spectroscopic properties of atactic 1,2-polybutadiene are compared, in addition to their ability to induce gelation. Olefin coordination and subsequent metal-catalyzed chemical crosslinking occur much more quickly, and to a greater extent, at ambient temperature with PdCl2(CH3CN)2 than with PtCl2(C6H5CN)2. Alkene side groups in the polymer attack the pseudo-square-planar metal center (i.e., Pd2+ or Pt2+) from above or below the plane of the coordinatively unsaturated low-molecular-weight organometallic complex and displace neutral acetonitrile or benzonitrile ligands via an associative mechanism. Gelation occurs much more quickly with Pd2+ than with Pt2+, and the ambient-temperature elastic modulus of solid polybutadiene/palladium complexes increases significantly, without high-temperature annealing, so that a weak rubbery polymer is transformed into a glass via 3 mol % Pd2+. Alkene functional groups in the side chain of the polymer do not coordinate to bis(dimethyl)glyoximatonickel(II) at ambient temperature because (1) it is difficult to displace anionic dimethylgloxime ligands that are bidentate; (2) these planar nickel complexes with C2h symmetry are stacked along the c axis via interlocking methyl groups on adjacent molecules; and (3) there is a lack of π back-bonding between dxy on Ni(II) and empty π* antibonding orbitals of CC, which typically stabilizes olefin complexes with pseudo-square-planar d8 metal centers. Pseudo-octahedral nickel(II) chloride hexahydrate does not form a complex with the polymer, in agreement with some macroscopic properties of these materials. The observed trend in the transition-metal-modified properties of atactic 1,2-polybutadiene in the solid state and in the gel state is Pd(II) > Pt(II) ≫ Ni(II). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2270–2285, 2004  相似文献   

20.
Transient absorption spectroscopy is used to study the excited‐state dynamics of Co3(dpa)4(NCS)2, where dpa is the ligand di(2‐pyridyl)amido. The ππ*, charge‐transfer, and d–d transition states are excited upon irradiation at wavelengths of 330, 400 and 600 nm, respectively. Similar transient spectra are observed under the experimental temporal resolution and the transient species show weak absorption. We thus propose that a low‐lying metal‐centered d–d state is accessed immediately after excitation. Analyses of the experimental kinetic traces reveal rapid conversion from the ligand‐centered ππ* and the charge‐transfer states to this metal‐centered d‐d state within 100 fs. The excited molecule then crosses to a second d–d state within the ligand‐field manifold, with a time coefficient of 0.6–1.4 ps. Because the ground‐state bleaching band recovers with a time coefficient of 10–23 ps, we propose that an excited molecule crosses from the low‐lying d–d state either directly within the same spin system or with spin crossing via the state 2B to the ground state 2A2 (symmetry group C4). In this trimetal string complex, relaxation to the ground electronic surface after excitation is thus rapid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号