首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L?1 day?1 and the space-time productivity of 143.2 mmol L?1 h?1 g?1. The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.  相似文献   

2.
l-Ribose is an important precursor for antiviral agents, and thus its high-level production is urgently demanded. For this aim, immobilized recombinant Escherichia coli cells expressing the l-arabinose isomerase and variant mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans were developed. The immobilized cells produced 99 g/l l-ribose from 300 g/l l-arabinose in 3 h at pH 7.5 and 60 °C in the presence of 1 mM Co2+, with a conversion yield of 33 % (w/w) and a productivity of 33 g/l/h. The immobilized cells in the packed-bed bioreactor at a dilution rate of 0.2 h?1 produced an average of 100 g/l l-ribose with a conversion yield of 33 % and a productivity of 5.0 g/l/h for the first 12 days, and the operational half-life in the bioreactor was 28 days. Our study is first verification for l-ribose production by long-term operation and feasible for cost-effective commercialization. The immobilized cells in the present study also showed the highest conversion yield among processes from l-arabinose as the substrate.  相似文献   

3.
Numerous desulfurizing bacteria from the Rhodococcus genus harbor conserved dsz genes responsible for the degradation of sulfur compounds through 4S pathway. This study describes a newly identified desulfurizing bacterium, Rhodococcus sp. FUM94, which unlike previously identified strains encodes a truncated dsz operon. DNA sequencing revealed a frameshift mutation in the dszA gene, which led to an alteration of 66 amino acids and deletion of other C-terminal 66 amino acids. The resulting DszA polypeptide was shorter than DszA in Rhodococcus sp. IGTS8 reference strain. Despite the truncation, desulfurizing activity of the operon was observed and attributed to the removal of an overlap of dszA and dszB genes, and lack of active site in the altered region. Desulfurization experiments resulted in specific production rate of 6.3 mmol 2-hydroxy biphenyl (kgDCW)?1 h?1 at 2 g l?1 biocatalyst concentration and 68.8% biodesulfurization yield at 20 g l?1 biocatalyst concentration, both at 271 μM dibenzothiophene concentration which is comparable to similar wild-type biocatalysts.  相似文献   

4.
In this study, a method for the efficient production of dehydroepiandrosterone (DHEA) from phytosterols in a vegetable oil/aqueous two-phase system by Mycobacterium sp. was developed. After the 3-hydroxyl group of phytosterols was protected, they could be converted into DHEA with high yield and productivity by Mycobacterium sp. NRRL B-3683. In a shake flask biotransformation, 15.05 g l?1 of DHEA and a DHEA yield of 85.39% (mol mol?1) were attained after 7 days with an initial substrate concentration of 25 g l?1. When biotransformation was carried out in a 30-l stirred bioreactor with 25 g l?1 substrate, the DHEA concentration and yield was 16.33 g l?1 and 92.65% (mol mol?1) after 7 days, respectively. The results of this study suggest that inexpensive phytosterols could be utilized for the efficient production of DHEA.  相似文献   

5.
A new strain, Candida tropicalis UFMG BX 12-a, was found to produce higher yields of xylitol on poplar wood hemicellulose hydrolysate. The hemicellulose hydrolysate liquor was detoxified using a novel method we developed, involving vacuum evaporation and solvent separation of inhibitors which made the hydrolysate free of toxins while retaining high concentrations of fermentable sugars. The effect of the detoxification method on the fermentation was also reported and compared to well-known methods reported in literature. In this study, the new strain C. tropicalis UFMG BX 12-a was used on the detoxified hydrolysate to produce xylitol. It was also compared to Candida guilliermondii FTI 20037, which has been reported to be one of the best strains for fermentative production of xylitol. To further improve the efficiency of the fermentation process, these strains were immobilized in calcium alginate beads. The yield (0.92 g g?1) and productivity (0.88 g L?1 h?1) obtained by fermenting the wood hydrolysate detoxified by our new detoxification technique using an immobilized new Candida strain were found to be higher than the values reported in literature.  相似文献   

6.
Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg?1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L?1 h?1 and the yield of 0.40 g g?1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L?1 h?1 and yield of 0.17 g g?1 straw. C. intermedia FL023 was tolerant to 0.5 g L?1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L?1 xylitol from xylose with the productivity of 0.38 g L?1 h?1 and the yield of 0.57 g g?1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.  相似文献   

7.
Growths of Lyngbya limnetica and Oscillatoria obscura were investigated at varying pH, light intensity, temperature, and trace element concentration with a view to optimize these parameters for obtaining the maximum carbohydrate content. The maximum growth for both strains was obtained at pH 9.0 and temperature 20 ± 3 °C using a light intensity of 68.0 μmol m?2 s?1 with continuous shaking. Growth under the nitrogen starvation condition affected the carbohydrate content more compared to the phosphorus starvation, and maximum concentrations were found as 0.660 and 0.621 g/g of dry biomass for L. limnetica and O. obscura, respectively. Under the optimized nitrogen-rich conditions, the specific growth rates for the two strains were found to be 0.187 and 0.215 day?1, respectively. The two-stage growth studies under nitrogen-rich (stage I) followed by nitrogen starvation (stage II) conditions were performed, and maximum biomass and carbohydrate productivity were found as 0.088 and 0.423 g L?1 day?1 for L. limnetica. This is the first ever attempt to evaluate and optimize various parameters affecting the growth of cyanobacterial biomass of L. limnetica and O. obscura as well as their carbohydrate contents.  相似文献   

8.
Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.  相似文献   

9.
l-ascorbyl palmitate (ASP) is an oil-soluble derivative of ascorbic acid which is used extensively in food, cosmetics industry, and medical hygiene. Enzymatic synthesis of ascorbyl palmitate in tert-butyl alcohol was carried out using indigenously immobilized lipase preparation PyCal with ascorbic acid and palmitic acid as starting material. The developed batch process under optimized reaction conditions resulted in conversion of 90% with relatively shorter reaction time of 6 h. Continuous process in packed bed reactor gave conversion of 50% with space time yield of 15.46 g/L/h which was found to be higher than the reported literature on enzymatic synthesis of ascorbyl palmitate. The immobilized lipase used in the present work showed good reusability. Characterization of formed ascorbyl palmitate was carried out by FTIR, MS/MS, H1-NMR, and C13-NMR. The enzymatic process resulted in selective synthesis of 6-O-l-ascorbyl palmitate with purity of 98.6% and no side product formation. The use of underivatized starting materials, high space time yield of 15.46 g L?1 h?1, high recyclability of catalyst, and no by-product formation make the overall process highly efficient and clean in terms of energy consumption and waste generation, respectively. The optimized reaction parameters for ascorbyl palmitate synthesis in the present study can be used as a useful reference for industrial synthesis of fatty acid esters of ascorbic acid by enzymatic route.  相似文献   

10.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   

11.
This work aimed to characterize two native microalgal strains newly isolated from South Mediterranean areas and identified as Chlorella sorokiniana ES3 and Neochloris sp. AM2. The growth properties and biochemical composition of these microalgae were evaluated in different culture media (Algal, BG-11, f/2, and Conway). Among the tested media, nitrate- and phosphate-rich Algal medium provided the maximum biomass productivities (85.5 and 111.5 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively), while the nitrate- and phosphate-deficient f/2 medium resulted in the highest lipid productivities (24.1 and 35.8 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively). The physiological state of both microalgae was investigated under different light and temperature levels using the pulse amplitude-modulated fluorometry. The better photosynthetic efficiency of C. sorokiniana was obtained at 23 °C with a light saturation of 156 μE m?2 s?1, while that of Neochloris sp. was achieved at 15 °C with a light saturation of 151 μE m?2 s?1. The analysis of fatty acid profile and biodiesel parameters revealed that C. sorokiniana, cultivated in Algal and f/2 media, can be considered as a suitable candidate for high-quality biodiesel production.  相似文献   

12.
Chemical preparation, crystal structure, and NMR spectroscopy of a new trans-2,5-dimethylpiperazinium monophosphate are given. This new compound crystallizes in the triclinic system, with the space group P-1 and the following parameters: a = 6.5033(3), b = 7.6942(4), c = 8.1473(5) Å, α = 114.997(3), β = 92.341(3), γ = 113.136(3), V = 329.14(3) Å3, Z = 1, and Dx = 1.565 g cm?3. The crystal structure has been determined and refined to R = 0.030 and R w(F 2) = 0.032 using 1558 independent reflections. The structure can be described as infinite [H2PO4] n n? chains with (C6H16N2)2+ organic cations anchored between adjacent polyanions to form columns of anions and cations running along the b axis. This compound has also been investigated by IR, thermal, and solid-state, 13C and 31P MAS NMR spectroscopies and Ab initio calculations.  相似文献   

13.
With the problems related to chemical methods of pyruvic acid (PA) synthesis, a fast-growing interest has been observed in research aiming at reducing the production cost of PA by applying biotechnological methods. This study aimed to investigate the potential applicability of Yarrowia lipolytica Wratislavia 1.31 yeast strain for valorisation of pure and crude glycerol through the production of industrially desired PA. Conditions required for the effective PA biosynthesis, i.e., pH value, thiamine concentration, agitation, and substrate concentration, were examined in batch and fed-batch cultivation modes. The efficient production of PA occurred under the limitation of thiamine (1 µg L?1) and was stimulated by moderate pH (4.5) and agitation (800 rev min?1) of the culture. Under optimal conditions, Y. lipolytica Wratislavia 1.31 was able to produce 85.2 g L?1 of PA with volumetric productivity of 0.90 g L?1 h?1. The yield of PA biosynthesis reached a high level of 1.03 g g?1. Obtained results confirmed the aptitude of Y. lipolytica yeast to produce high amounts of PA from simple glycerol-containing media. Presented process was very promising and might be considered as an attractive alternative for currently used chemical methods of PA synthesis.  相似文献   

14.
Two series of water-soluble metalloporphyrin-cored amphiphilic star block copolymers were synthesized by controlled radical polymerizations such as atom transfer radical polymerization (ATRP) and reversible addition fragmentation chain transfer (RAFT), which gave eight amphiphilic block copolymer arm chains consisting of poly(n-butyl acrylate-b-poly(ethylene glycol) methyl ether methacylate) (PnBA-b-PEGMEMA, Mn,GPC = 78,000, Mw/Mn = 1.2, 70 wt% of PPEGMEMA) and poly(styrene-b-2-dimethylamino ethyl acrylate) (PS-b-PDMAEA, Mn,GPC = 83,000, Mw/Mn = 1.2, 67 wt% of PDMAEA), yielding porphyrin(Pd)-(PnBA-b-PPEGMEMA)8 and porphyrin(Pd)-(PS-b-PDMAEA)8, respectively. Obtained metalloporphyrin polymer photocatalysts were homogeneously solubilized in water to apply to the removal of chlorophenols in water, and was distinguished from conventional water-insoluble small molecular metalloporphyrin photocatalysts. Notably, we found that the water-soluble star block copolymers with hydrophobic–hydrophilic core–shell structures more effectively decomposed the chlorophenol, 2,4,6-trichlorophenol (2,4,6-TCP), in water under visible light irradiation (k = 1.39 h?1, t1/2 = 0.5 h) in comparison to the corresponding water-soluble star homopolymer, because the hydrophobic core near the metalloporphyrin effectively captured and decomposed the hydrophobic chlorophenols in water.  相似文献   

15.
From three cell-associated β-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60–70 °C) over a pH range of 5–9 with a specific activity of 163.3 units (U) mg?1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-β-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 μmol min?1 mg?1 protein, respectively. When combining this β-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g?1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g?1 β-xylosidase and 16 U g?1 xylanase after incubation for 4 h at 70 °C and pH 6.0.  相似文献   

16.
The interaction between nicotinic acid (NA) and l-phenylalanine (Phe) was studied in aqueous phosphate buffer solutions (pH = 7.35) by differential scanning calorimetry. Heat capacities of nicotinic acid–buffer, l-phenylalanine–buffer, and nicotinic acid–l-phenylalanine–buffer mixtures were determined at (283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15 and 323.15) K using the microdifferential scanning calorimeter SCAL-1 (Pushchino, Russia). The apparent molar heat capacities, ? C p , of nicotinic acid in buffer solution and in buffer 0.0216 mol·kg?1 amino acid solutions were evaluated. The concentration of NA was varied from (0.0106–0.0701) mol·kg?1. The interaction of NA with Phe is accompanied by complex formation. The partial molar heat capacities of transfer of nicotinic acid from buffer to buffer amino acid solutions are positive. The results are discussed in terms of various interactions operating in this system.  相似文献   

17.
Simultaneous production of amyloglucosidase (AMG) and exo-polygalacturonase (exo-PG) was carried out by Aspergillus niger in substrate of defatted rice bran in a rotating drum bioreactor (RDB) and studied by a 31 × 22 factorial experimental design. Variables under study were A. niger strains (A. niger NRRL 3122 and A. niger t0005/007-2), types of inoculum (spore suspension and fermented bran), and types of inducer (starch, pectin, and a mix of both). Solid-state fermentation process (SSF) was conducted at 30 °C under 60-vvm aeration for 96 h in a pilot scale. Production of AMG and exo-PG was significantly affected by the fungal strain and the type of inoculum, but inducers did not trigger any significant effect, an evidence of the fact that these enzymes are constitutive. The maximum activity of exo-PG was 84 U gdm ?1 whereas the maximum yield of AMG was 886.25 U gdm ?1.  相似文献   

18.
Lignin polymers in bamboo (Phyllostachys pubescens) were decomposed into polyphenols at high temperatures and oxidized for the introduction of quinone groups from peroxidase extracted from bamboo shoots and catalysis of UV. According to the results of FT-IR spectra analysis, neutral proteases (NPs) can be immobilized on the oxidized lignin by covalent bonding formed by amine group and quinone group. The optimum condition for the immobilization of NPs on the bamboo bar was obtained at pH 7.0, 40 °C, and duration of 4 h; the amount of immobilized enzyme was up to 5 mg g?1 bamboo bar. The optimal pH for both free NP (FNP) and INP was approximately 7.0, and the maximum activity of INP was determined at 60 °C, whereas FNP presented maximum activity at 50 °C. The Km values of INP and FNP were determined as 0.773 and 0.843 mg ml?1, respectively; INP showed a lower Km value and Vmax, than FNP, which demonstrated that INP presented higher affinity to substrate. Compared to FNP, INP showed broader thermal and storage stability under the same trial condition. With respect to cost, INP presented considerable recycling efficiency for up to six consecutive cycles.  相似文献   

19.
A novel cyclopropane derivative, 1-cyano-N-p-tolylcyclopropanecarboxamide (C12H12N2O, Mr = 200.24) was synthesized and its structure was studied by X-ray diffraction, FTIR, 1H and 13C NMR spectrum and MS. The crystals are monoclinic, space group P2_1/c with a = 7.109 (4), b = 13.758 (7), c = 11.505 (6) Å, α = 90.00, β = 102.731 (8), γ = 90.00 °, V = 1097.6 (9) Å3, Z = 4, F(000) = 312, D c  = 1.212 g/cm3, μ = 0.0800 mm?1, the final R = 0.0490 and wR = 0.1480 for 1,375 observed reflections with I > 2σ(I). A total of 6,109 reflections were collected, of which 2,290 were independent (R int = 0.0290). Theoretical calculation of the title compound was carried out with HF/6-31G (d,p), B3LYP/6-31G (d,p), MP2/6-31G (d,p). The full geometry optimization was carried out using 6-31G(d,p) basis set, and the frontier orbital energy. Atomic net charges were discussed, and the structure-activity relationship was also studied. The preliminary biological test showed that the synthesized compound is bioactive against the KARI of Escherichia coli.  相似文献   

20.
Glutathione (γ-glutamyl-L-cysteinylglycine, GSH) is a pharmaceutical compound often used in food additives and the cosmetics industry. GSH can be produced biologically from L-glutamic acid, L-cysteine, and glycine through an enzymatic process traditionally involving two sequential adenosine triphosphate (ATP)-dependent reactions catalyzed by γ-glutamylcysteine synthetase (γ-GCS or GSHI, EC 6.3.2.2) and GSH synthetase (GS or GSHII, EC 6.3.2.3). Here, we report the enzymatic production of GSH by recombinant cell-free bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (γ-GCS-GS or GshF) coupled with in vitro acetate kinase-based ATP generation. GSH production by an acetate kinase-integrated Escherichia coli Rosetta(DE3) mutant expressing Streptococcus thermophilus GshF reached 18.3 ± 0.1 g l?1 (59.5 ± 0.3 mM) within 3 h, with a molar yield of 0.75 ± 0.00 mol mol?1 added cysteine and a productivity of 6.1 ± 0.0 g l?1 h?1. This is the highest GSH titer reported to date. This newly developed biocatalytic process offers a promising approach for meeting the industrial requirements for GSH production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号