首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plane problem of the theory of elasticity is considered. It is assumed that in the neighborhood of the tip of an arbitrarily moving crack the stresses have a singularity of order r–1/2. On this assumption a general expression is obtained for the distribution of the stresstensor components in the given neighborhood. This distribution is determined by the two parameters N and P. In the case of stresses symmetrical about the line of the crack (P=0) the angular distribution does not depend on the intensity coefficient N and is determined only by the velocity of the crack at the given instant and the transverse and longitudinal wave velocities. On the same assumptions it is shown that the energy condition obtained by Craggs for the particular case of steady-state motion is a necessary condition for the arbitrarily moving crack. Irwin [1] and Cherepanov [2] have studied these questions in the quasi-static approximation.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 10, No. 3, pp. 175–178, May–June, 1969.  相似文献   

2.
This paper considers local temperature variations near the tip of a crack in the presence of regions in which the crack faces interact. It is assumed that these regions are adjacent to the crack tip and are comparable in size to the crack size. The problem of local temperature variations consists of delay or retardation of crack growth. For a crack with connections between the crack faces subjected to external tensile loads, an induced thermoelastic stress field, and the stresses at the connections preventing crack opening, the boundary-value problem of the equilibrium of the crack reduces to a system of nonlinear singular integrodifferential equations with a Cauchy kernel. The normal and tangential stresses at the connections are found by solving this system of equations. The stress intensity factors are calculated. The energy characteristics of cracks with tip regions are considered. The limiting equilibrium condition for cracks with tip regions is formulated using the criterion of limiting stretching of the connections.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 133–143, January–February, 2005  相似文献   

3.
A crack model similar to the Peierls-Nabarro model is used to investigate the dependence of the configuration of the atomic planes bordering a crack on the law of interplanar interaction. The maximum stress at the end of the crack is determined directly from the stress law, and the configuration of the crack is described by a smooth function satisfying nonlinear integro-differential singular equation (1.3). A semi-inverse method of solving this equation is proposed. The configurations of the atomic planes bordering the crack are constructed for a series of laws of interplanar interaction.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 1, pp. 96–102, January–February, 1970.The authors thank Yu. N. Rabotnov for his interest in their work and A. A. Shtol'berg for assisting with the numerical calculations.  相似文献   

4.
Propagation of a semi-infinite crack along the interface between an elastic half-plane and a rigid half-plane is analyzed. The crack advances at constant subsonic speed. It is assumed that, ahead of the crack, there is a finite segment where the conditions of Coulomb friction law are satisfied. The contact zone of unknown a priori length propagates with the same speed as the crack. The problem reduces to a vector Riemann–Hilbert problem with a piece-wise constant matrix coefficient discontinuous at three points, 0, 1, and ∞. The problem is solved exactly in terms of Kummer's solutions of the associated hypergeometric differential equation. Numerical results are reported for the length of the contact friction zone, the stress singularity factor, the normal displacement u2, and the dynamic energy release rate G. It is found that in the case of frictionless contact for both the sub-Rayleigh and super-Rayleigh regimes, G is positive and the stress intensity factor KII does not vanish. In the sub-Rayleigh case, the normal displacement is positive everywhere in the opening zone. In the super-Rayleigh regime, there is a small neighborhood of the ending point of the open zone where the normal displacement is negative.  相似文献   

5.
The three-dimensional dynamic problem of coplanar circular cracks in an elastic half-space with a clamped boundary condition is considered. The crack faces are subjected to harmonic loads. The problem is reduced to a system of two-dimensional boundary integral equations of the type of the Helmholtz potential for unknown discontinuities in the displacements of the opposite faces of the cracks. The stress intensity factors at the crack contours are obtained and discussed.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 153–159, January–February, 2005  相似文献   

6.
In this study, the dynamic response of a coated piezoelectric strip containing a crack vertical to the interfaces under normal impact load is considered. Based on the superposition principle and the integral transform techniques, the solution in the Laplace transformed plane is obtained in terms of a singular integral equation. The order of stress singularity around the tip of the terminated crack is also obtained. The singular integral equation is solved by using the Gauss–Jacobi integration formula, and the numerical Laplace inversion is then carried out to obtain the resulting dynamic stress and electric displacement intensities. The effects of the material properties and the geometric parameters on the dynamic stress intensity factor and the dynamic energy density factors are shown graphically.  相似文献   

7.
The problem on the stress–strain state of an infinite isotropic body made of a magnetically soft material and containing an elliptic crack is considered. It is assumed that the body is under an external magnetic field perpendicular to the crack plane. The basic characteristics of the stress–strain state and the magnetic field induced are determined and their singularities near the elliptic crack are studied. Formulas are given for the stress intensity factors for the force and magnetic fields near the crack tip  相似文献   

8.
Summary  The singular integral equation method is applied to the calculation of the stress intensity factor at the front of a rectangular crack subjected to mixed-mode load. The stress field induced by a body force doublet is used as a fundamental solution. The problem is formulated as a system of integral equations with r −3-singularities. In solving the integral equations, unknown functions of body-force densities are approximated by the product of polynomial and fundamental densities. The fundamental densities are chosen to express two-dimensional cracks in an infinite body for the limiting cases of the aspect ratio of the rectangle. The present method yields rapidly converging numerical results and satisfies boundary conditions all over the crack boundary. A smooth distribution of the stress intensity factor along the crack front is presented for various crack shapes and different Poisson's ratio. Received 5 March 2002; accepted for publication 2 July 2002  相似文献   

9.
Results are given of an experimental study of laminar flow of a liquid in triangular-shaped open channels with tangential frictional stress at the free surface. Experiments were carried out when the liquid flow in inclined triangular-shaped channels had Reynolds numbers R < 10 and the working range of Reynolds numbers of the approach air stream was R = (1.6–3.6)·104. The data are presented in relative coordinates as a dependence of the hydraulic resistance coefficient of the liquid on the tangential frictional stress at the free surface. It is shown that with an increase of the tangential frictional stress the hydraulic resistance coefficient considerably increases.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 168–170, January–February, 1977.  相似文献   

10.
The antiplane analysis is made for a bimaterial BaTiO3–CoFe2O4 composite wedge containing an interface crack. The coupled magneto-electro-elastic field is induced by the piezoelectric/piezomagnetic BaTiO3–CoFe2O4 composite materials. For the crack problems, the intensity factors of stress, strain, electric displacement, electric field, magnetic induction and magnetic field at crack tips are derived analytically. Also, the energy density criterion is applied to predict the fracture behavior of the interface crack. The numerical results also show that the energy release rate for a crack in a single wedge is negative.  相似文献   

11.
A plane problem for a thermally insulated interface crack with a contact zone in an isotropic bimaterial under tension–shear mechanical loading and a temperature flux is considered. The expressions for the stresses and the electrical flux as well as for the derivatives of the displacement and the temperature jumps at the material interfaces via sectionally holomorphic mechanical and thermal potential functions are given. After the solution of the thermal problem the inhomogeneous combined Dirichlet–Riemann boundary value problem is formulated and solved exactly. The stresses at the interface and the stress intensity factors at the singular points are presented in a clear analytical form. Special attention is devoted to the case of a small contact zone when the stress intensity factors can be presented in form similar to the associated presentation for an “open” crack model. A transcendental equation and an asymptotic analytic formula for the determination of the real contact zone length are derived. It is shown that for a certain bimaterial this length as well as the correspondent stress intensity factor are defined by a single parameter which depends on the normal-shear loading and the heat flux.  相似文献   

12.
The rapid extension of a penny-shaped crack under torsion is investigated. Both dynamic and quasi-static loading is considered. The wave motion is analyzed through a Green's function technique which leads to an integral equation for the stress field around the crack. Asymptotic expansions for the stress intensity and displacement rate intensity functions which are valid for a small time are obtained for the two types of loading. The propagation of the crack is analyzed through the balance of rates of energy criterion.  相似文献   

13.
The magnetoelastic problem for a transversely isotropic ferromagnetic body with a parabolic crack in the plane of isotropy is solved explicitly. The body is in an external magnetic field, which is perpendicular to the plane of isotropy. The field induces elastic strains and a magnetic field in the body. The characteristics of the stress–strain distribution and induced magnetic field are determined; and their singularities in the neighborhood of the crack are analyzed. Formulas for the stress intensity factors of the mechanical and magnetic fields near the crack tip are presented  相似文献   

14.
An investigation of a multicomponent boundary layer taking account of nonequilibrium chemical reactions has been made in a number of publications [1–3]; here, the temperature of the solid was assumed to be known or was determined from the condition of the conservation of energy at the interface between the gas and the solid, taking account of the solution of the equation of thermal conductivity in the solid phase. At the same time, heating of the material of a coating is an unavoidable step in any mechanism of thermokinetic decomposition and, in view of this, it is necessary to take account of the lag of the heat-transfer process inside the solid. Therefore, it is necessary to solve the equation of the energy balance in the solid phase simultaneously with the system of the equations of the boundary layer, i.e., the conjugate problem. The present article discusses the problem of flow around a solid in the vicinity of a frontal critical point, taking account of the dependence of the processes taking place in the solid body on the time, in the presence of two heterogeneous and one homogeneous reactions. The distributions of the velocity, the temperature, and the concentrations in the boundary layer are obtained, as well as the mass rate of entrainment of the material at different moments of time. The time of the change between kinetic and diffusion conditions of the course of the heterogeneous chemical reactions (the ignition time) is determined. It is established that, in the presence of a homogeneous chemical reaction, the mass rate of entrainment is less than with a frozen flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 121–128, March–April, 1974.  相似文献   

15.
An infinite plate containing a finite through crack under tensile loading is analysed by Fourier transform based on the Kane-Mindlin kinematic assumptions for the quasi-three-dimensional deformation of plates in extension. The asymptotic expressions of stress and displacement fields near the crack tip, the variation of the stress intensity factor with the plate-thickness and the three-dimensional deformation zone near the crack tip are investigated. The results of the analysis show that, (a) the crack-tip stress and displacement fields accounting for the plate-thickness effects are different from the plane stress solutions and this is true even for extremely small parameter (=1–vh/6 a). In a very small region near the crack tip, plane strain solutions prevail; (b) the ratio of the stress intensity factor KI to the corresponding plane stress one KI, KI/K I o , approaches 1/(1–v2) as tends to zero; (c) plane stress solutions can give satisfactory results for points a distance from the crack tip greater than about three-fourths of the plate-thickness; (d) the linear elastic result for the zone of three-dimensional effects is approximately valid for an elasto-plastic material with linear strain-hardening when the plastic tangential mudulus Et is not very small.The Project Supported by National Natural Science Foundation of China.  相似文献   

16.
The formulation in Part I (Theoret. Appl. Fracture Mech. 17, 205–219 (1992)) of this work for collinear cracks in alternate layers of an anisotropic laminate is extended to a system where each of the cracked layer contains a periodic array of parallel cracks. These cracks are also collinear such that they are periodic in two mutually perpendicular directions. Finite Fourier transform is applied at discrete points for one of the space variables reducing the problem to a singular integral equation. The unknown is expressible in terms of the crack opening displacement as in Part I. Displayed graphically are the normalized stress intensity factor, effective stiffness of the laminate, and the interlayer stresses. The local stress intensity factor for the double array crack system is always less than that for a single isolated crack depending on the periodicity ratio. The interlayer stresses directly ahead of the crack are elevated, the intensity of which increases with decreasing distance between the crack tip and interface. Increase in the thickness of the adjoining layer tends to decrease the interlayer stresses nearest to the crack tip, a result that is to be expected.  相似文献   

17.
18.
In this work we investigate the stability of a nominally straight two-dimensional quasistatically growing crack to a small perturbation of its path. Formulae for perturbations of stress intensity factors induced by slight deviation of the crack trajectory were developed by Movchan et al. (Int. J. Solids Struct. 35, 3419) Their solution is exploited to derive an equation for the perturbation of the crack path on the assumption that the crack advances in pure “opening” mode (i.e. local KII=0). Various types of loading conditions are considered, including a cracked body loaded by a pair of point body forces and a crack whose faces are subjected to given tractions acting in the direction normal to the crack boundary. The body is also subjected to a remotely maintained uniaxial stress, aligned with the direction of the unperturbed crack. The loading is assumed to advance as the crack advances, to maintain the critical value of Mode I stress intensity factor. Numerical computations of possible crack paths have been performed, extending results on crack stability obtained by Cotterell and Rice (Int. J. Fract. 16, 155). The results show that in the case of loading by point body forces the stability of the crack path depends on the positions of the points of application of the applied forces and the magnitude of the applied stress acting parallel to the crack. There exists a critical value of this stress such that the crack path is stable for values less than critical and unstable otherwise. It is shown that the crack is always unstable in the case of point force tractions applied normal to the crack faces.  相似文献   

19.
The paper considers a model problem for Poisson's equation for a region containing a crack or a set of cracks under arbitrary linear perturbation. Variational formulation of the problem using smooth mapping of regions yields a complete asymptotic expansion of the solution in the perturbation parameter, which is a generalized shape derivative. This global asymptotic expansion of the solution was used to derive representations of arbitraryorder derivatives for the potential energy function, stress intensity factors, and invariant energy integrals in general form and for basis perturbations of the region (shear, tension, and rotation). The problem of the local growth of a branching crack for the Griffith fracture criterion and the linearized problem of optimal location of a rectilinear crack in a body with the energy function as a cost functional were formulated.  相似文献   

20.
The weight function in fracture mechanics is the stress intensity factor at the tip of a crack in an elastic material due to a point load at an arbitrary location in the body containing the crack. For a piezoelectric material, this definition is extended to include the effect of point charges and the presence of an electric displacement intensity factor at the tip of the crack. Thus, the weight function permits the calculation of the crack tip intensity factors for an arbitrary distribution of applied loads and imposed electric charges. In this paper, the weight function for calculating the stress and electric displacement intensity factors for cracks in piezoelectric materials is formulated from Maxwell relationships among the energy release rate, the physical displacements and the electric potential as dependent variables and the applied loads and electric charges as independent variables. These Maxwell relationships arise as a result of an electric enthalpy for the body that can be formulated in terms of the applied loads and imposed electric charges. An electric enthalpy for a body containing an electrically impermeable crack can then be stated that accounts for the presence of loads and charges for a problem that has been solved previously plus the loads and charges associated with an unsolved problem for which the stress and electric displacement intensity factors are to be found. Differentiation of the electric enthalpy twice with respect to the applied loads (or imposed charges) and with respect to the crack length gives rise to Maxwell relationships for the derivative of the crack tip energy release rate with respect to the applied loads (or imposed charges) of the unsolved problem equal to the derivative of the physical displacements (or the electric potential) of the solved problem with respect to the crack length. The Irwin relationship for the crack tip energy release rate in terms of the crack tip intensity factors then allows the intensity factors for the unsolved problem to be formulated, thereby giving the desired weight function. The results are used to derive the weight function for an electrically impermeable Griffith crack in an infinite piezoelectric body, thereby giving the stress intensity factors and the electric displacement intensity factor due to a point load and a point charge anywhere in an infinite piezoelectric body. The use of the weight function to compute the electric displacement factor for an electrically permeable crack is then presented. Explicit results based on a previous analysis are given for a Griffith crack in an infinite body of PZT-5H poled orthogonally to the crack surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号