首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some two-scale finite element discretizations are introduced for a class of linear partialdifferential equations. Both boundary value and eigenvalue problems are studied. Basedon the two-scale error resolution techniques, several two-scale finite element algorithmsare proposed and analyzed. It is shown that this type of two-scale algorithms not onlysignificantly reduces the number of degrees of freedom but also produces very accurateapproximations.  相似文献   

2.
具有小周期孔隙复合材料弹性结构的双尺度有限元分析   总被引:6,自引:1,他引:5  
对于具有小周期孔隙复合材料弹性结构,在双尺度渐近分析理论结果的基础上提出了双尺度有限元计算格式,并给出了严格的误差估计.  相似文献   

3.
The application of an alternating-direction finite element solution procedure to two-phase immiscible displacement problems in porous media is illustrated. This solution scheme provides for rapid solution of the discrete problem, due to the narrow banded matrices involved, with an accuracy which is comparable to that of standard finite element approximations. The governing partial differential equations for immiscible two-phase porous media flow are given and their discretization, via a Laplace-modified time stepping scheme, is presented. Iterative improvement of the time stepping scheme is also considered and numerical examples are provided which demonstrate the saving in computational time which can be achieved.  相似文献   

4.
1. IntroductionComPosite materials have been widely used in high tedrilogy ewineering as well as or-dinary industrial products since they have mW elegat qllallties, such as high strength, bostffeess, high temperature resistance, corrosion resistance, and fatgh resistance. Most of thecomPosite materiaIs have small periodic condgurations. Thu8 the static analysis of the struc-tures of comPosite materials usually leads to the boundary valu Problezns of eiliPtic patialdtherelitial eqllations wi…  相似文献   

5.
To reduce computational cost,we study some two-scale finite element approximations on sparse grids for elliptic partial differential equations of second order in a general setting.Over any tensor product domain ?R~d with d = 2,3,we construct the two-scale finite element approximations for both boundary value and eigenvalue problems by using a Boolean sum of some existing finite element approximations on a coarse grid and some univariate fine grids and hence they are cheaper approximations.As applications,we obtain some new efficient finite element discretizations for the two classes of problem:The new two-scale finite element approximation on a sparse grid not only has the less degrees of freedom but also achieves a good accuracy of approximation.  相似文献   

6.
In this article, a finite element scheme based on the Newton's method is proposed to approximate the solution of a nonlocal coupled system of parabolic problem. The Crank‐Nicolson method is used for time discretization. Well‐posedness of the problem is discussed at continuous and discrete levels. We derive a priori error estimates for both semidiscrete and fully discrete formulations. Results based on usual finite element method are provided to confirm the theoretical estimates.  相似文献   

7.
In this article we study two families of multiscale methods for numerically solving elliptic homogenization problems. The recently developed multiscale finite element method [Hou and Wu, J Comp Phys 134 (1997), 169–189] captures the effect of microscales on macroscales through modification of finite element basis functions. Here we reformulate this method that captures the same effect through modification of bilinear forms in the finite element formulation. This new formulation is a general approach that can handle a large variety of differential problems and numerical methods. It can be easily extended to nonlinear problems and mixed finite element methods, for example. The latter extension is carried out in this article. The recently introduced heterogeneous multiscale method [Engquist and Engquist, Comm Math Sci 1 (2003), 87–132] is designed for efficient numerical solution of problems with multiscales and multiphysics. In the second part of this article, we study this method in mixed form (we call it the mixed heterogeneous multiscale method). We present a detailed analysis for stability and convergence of this new method. Estimates are obtained for the error between the homogenized and numerical multiscale solutions. Strategies for retrieving the microstructural information from the numerical solution are provided and analyzed. Relationship between the multiscale finite element and heterogeneous multiscale methods is discussed. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

8.
Abstract

In this paper, a Crank–Nicolson finite difference/finite element method is considered to obtain the numerical solution for a time fractional Sobolev equation. Firstly, the classical finite element method is presented. Stability and error estimation for the fully discrete scheme are rigorously established. However, the amount of calculation and computing time are too large due to many degrees of freedom of classical finite element scheme and nonlocality of fractional differential operator. And then the modified reduced-order finite element scheme with low dimensions and sufficiently high accuracy, which is based on proper orthogonal decomposition technique, is provided. Stability and convergence for the reduced-order scheme are also studied. At last, numerical examples show that the results of numerical computation are consistent with previous theoretical conclusions.  相似文献   

9.
This article concerns a procedure to generate optimal adaptive grids for convection dominated problems in two spatial dimensions based on least-squares finite element approximations. The procedure extends a one dimensional equidistribution principle which minimizes the interpolation error in some norms. The idea is to select two directions which can reflect the physics of the problems and then apply the one dimensional equidistribution principle to the chosen directions. Model problems considered are the two dimensional convection-diffusion problems where boundary and interior layers occur. Numerical results of model problems illustrating the efficiency of the proposed scheme are presented. In addition, to avoid skewed mesh in the optimal grids generated by the algorithm, an unstructured local mesh smoothing will be considered in the least-squares approximations. Comparisons with the Gakerkin finite element method will also be provided.  相似文献   

10.
We apply the boundary integral equation method and a primal mixed finite element approach to study the weak solvability and Galerkin approximations of linear interior transmission problems arising in potential theory and elastostatics. The existence and uniqueness of solution of the resulting weak formulations and of the associated discrete schemes are derived by using the classical theory for variational problems with constraints. Suitable finite element subspaces of Lagrange type satisfying the compatibility conditions are utilized for defining the Galerkin scheme. The error analysis and corresponding rates of convergence are also provided.  相似文献   

11.
In this paper a second order characteristics finite element scheme is applied to the numerical solution of natural convection problems. Firstly, after recalling the mathematical model, a second order time discretization of the material time derivative is introduced. Next, fully discretized schemes are proposed by using finite element methods. Numerical results for the two-dimensional problem of buoyancy-driven flow in a square cavity with differentially heated side walls are given and compared with a reference solution.  相似文献   

12.
In this paper, we propose a positivity-preserving conservative scheme based on the virtual element method (VEM) to solve convection–diffusion problems on general meshes. As an extension of finite element methods to general polygonal elements, the VEM has many advantages such as substantial mathematical foundations, simplicity in implementation. However, it is neither positivity-preserving nor locally conservative. The purpose of this article is to develop a new scheme, which has the same accuracy as the VEM and preserves the positivity of the numerical solution and local conservation on primary grids. The first step is to calculate the cell-vertex values by the lowest-order VEM. Then, the nonlinear two-point flux approximations are utilized to obtain the nonnegativity of cell-centered values and the local conservation property. The new scheme inherits both advantages of the VEM and the nonlinear two-point flux approximations. Numerical results show that the new scheme can reach the optimal convergence order of the virtual element theory, that is, the second-order accuracy for the solution and the first-order accuracy for its gradient. Moreover, the obtained cell-centered values are nonnegative, which demonstrates the positivity-preserving property of our new scheme.  相似文献   

13.
The purpose of this paper is to study the weak Galerkin finite element method for a class of quasilinear elliptic problems. The weak Galerkin finite element scheme is proved to have a unique solution with the assumption that guarantees the corresponding operator to be strongly monotone and Lipschitz-continuous. An optimal error estimate in a mesh-dependent energy norm is established. Some numerical results are presented to confirm the theoretical analysis.  相似文献   

14.
A fully discrete stabilized scheme is proposed for solving the time-dependent convection-diffusion-reaction equations. A time derivative term results in our stabilized algorithm. The finite element method for spatial discretization and the backward Euler or Crank-Nicolson scheme for time discretization are employed. The long-time stability and convergence are established in this article. Finally, some numerical experiments are provided to confirm the theoretical analysis.  相似文献   

15.
In this article, we develop a combined finite element‐weighted upwind finite volume method for convection‐dominated diffusion problems in two dimensions, which discretizes the diffusion term with the standard finite element scheme, and the convection and source terms with the weighted upwind finite volume scheme. The developed method leads to a totally new scheme for convection‐dominated problems, which overcomes numerical oscillation, avoids numerical dispersion, and has high‐order accuracy. Stability analyses of the scheme are given for the problems with constant coefficients. Numerical experiments are presented to illustrate the stability and optimal convergence of our proposed method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 799–818, 2016  相似文献   

16.
In this work we study two quasistatic frictional contact problems arising in viscoplasticity including the mechanical damage of the material, caused by excessive stress or strain and modelled by an inclusion of parabolic type. The variational formulation is provided for both problems and the existence of a unique solution is proved for each of them. Then a fully discrete scheme is introduced using the finite element method to approximate the spatial domain and the Euler scheme to discretize the time derivatives. Error estimates are derived and, under suitable regularity assumptions, the linear convergence of the algorithm is deduced. Finally, some numerical examples are presented to show the performance of the method.  相似文献   

17.
Linearly-implicit two-step peer methods are successfully applied in the numerical solution of ordinary differential and differential-algebraic equations. One of their strengths is that even high-order methods do not show order reduction in computations for stiff problems. With this property, peer methods commend themselves as time-stepping schemes in finite element calculations for time-dependent partial differential equations (PDEs).We have included a class of linearly-implicit two-step peer methods in the finite element software Kardos. There PDEs are solved following the Rothe method, i.e. first discretised in time, leading to linear elliptic problems in each stage of the peer method. We describe the construction of the methods and how they fit into the finite element framework. We also discuss the starting procedure of the two-step scheme and questions of local temporal error control.The implementation is tested for two-step peer methods of orders three to five on a selection of PDE test problems on fixed spatial grids. No order reduction is observed and the two-step methods are more efficient, at least competitive, in comparison with the linearly implicit one-step methods provided in Kardos.  相似文献   

18.
This work is concerned with the development of an efficient two-scale numerical scheme for the prediction of the local and effective mechanical response of heterogeneous materials with non-linear constitutive behavior. In order to ensure both, accurate micromechanical fields and feasible overall CPU-times, an efficient but rather simple solution scheme is proposed. Its capabilities are demonstrated using the FE-FFT method [2,3] for the solution of simple two-scale problems. As an example, two-dimensional polycrystalline microstructures with an elasto-viscoplastic constitutive law are considered. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
This article establishes a discrete maximum principle (DMP) for the approximate solution of convection–diffusion–reaction problems obtained from the weak Galerkin (WG) finite element method on nonuniform rectangular partitions. The DMP analysis is based on a simplified formulation of the WG involving only the approximating functions defined on the boundary of each element. The simplified weak Galerkin (SWG) method has a reduced computational complexity over the usual WG, and indeed provides a discretization scheme different from the WG when the reaction terms are present. An application of the SWG on uniform rectangular partitions yields some 5- and 7-point finite difference schemes for the second order elliptic equation. Numerical experiments are presented to verify the DMP and the accuracy of the scheme, particularly the finite difference scheme.  相似文献   

20.
Optimization problems with L1-control cost functional subject to an elliptic partial differential equation(PDE)are considered.However,different from the finite dimensiona l1-regularization optimization,the resulting discretized L1norm does not have a decoupled form when the standard piecewise linear finite element is employed to discretize the continuous problem.A common approach to overcome this difficulty is employing a nodal quadrature formula to approximately discretize the L1-norm.In this paper,a new discretized scheme for the L1-norm is presented.Compared to the new discretized scheme for L1-norm with the nodal quadrature formula,the advantages of our new discretized scheme can be demonstrated in terms of the order of approximation.Moreover,finite element error estimates results for the primal problem with the new discretized scheme for the L1-norm are provided,which confirms that this approximation scheme will not change the order of error estimates.To solve the new discretized problem,a symmetric Gauss-Seidel based majorized accelerated block coordinate descent(sGS-mABCD)method is introduced to solve it via its dual.The proposed sGS-mABCD algorithm is illustrated at two numerical examples.Numerical results not only confirm the finite element error estimates,but also show that our proposed algorithm is efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号