首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过二乙三胺五乙酸(DTPA)酸酐与一种新型杂环化合物的酰化反应,得到了双酰胺共价键链接、杂环化合物修饰的DTPA配体。再与GdCl3·6H2O反应得到相应的顺磁性钆(Ⅲ)配合物。通过元素分析、FTIR、1H NMR等手段表征了配体和金属配合物的结构,进而测定了配合物的纵向弛豫率(R1)。结果表明,配合物分子稳定性很好,且在同等含钆量条件下,这种新型钆(Ⅲ)金属配合物的R1(5.12 mmol·L-1·s-1)高于临床应用的磁共振成像对比剂Gd-DTPA(3.64 mmol·L-1·s-1)。  相似文献   

2.
双酰胺稀土配合物的合成及荧光性能   总被引:3,自引:3,他引:0       下载免费PDF全文
为寻求发光性能良好的配合物,设计合成了一种新的双酰胺配体1,4-二 苯(L),并在氯仿和乙酸乙酯溶液中合成了其与硝酸钐、硝酸铕和硝酸铽的发光稀土配合物。元素分析数据表明稀土硝酸盐与配体形成的是 1 : 1 型的配合物;红外光谱显示配合物具有相似的配位结构。对配体及其配合物的荧光进行了详细的研究,结果表明:钐、铕和铽配合物分别呈现出Sm3+、Eu3+、Tb3+的特征发射,铕离子处于不对称中心格位,硝酸铽配合物荧光相对强度最大。  相似文献   

3.
新型双β-二酮稀土配合物的荧光性质   总被引:1,自引:0,他引:1       下载免费PDF全文
稀土离子因其特有的结构,具有较好的荧光特性,能与许多有机配体形成有良好荧光性能的配合物。简要介绍了双β-二酮配体的合成,研究了Eu3+、Tb3+双β-二酮配合物体系的荧光性能,该体系具有良好的荧光特性。通过对其紫外光谱、荧光光谱测定和对比,分析了不同因素,包括溶剂、配体结构、pH值等因素对体系荧光强度的影响。实验结果表明:稀土(Eu3+,Tb3+)-β-二酮体系在乙醇溶液中其荧光强度比在水溶液中大得多;乳化剂OP能增强体系荧光强度;在pH约为6时荧光最强;不同结构的β-二酮配体与稀土离子所形成的配合物的荧光强度顺序为H2L1>H2L2>H2L3;Eu3+比Tb3+能更好地与这些β-二酮匹配,其中Eu3+与β-二酮配体H2L1形成的配合物荧光性能最好。  相似文献   

4.
有机电致发光材料具有主动发光、视角广、对比度高等显著特点。稀土有机配合物电致发光材料目前备受广大研究者的关注。以水杨醛和苯甲酸衍生物为原料,经酯化、肼化及希夫碱缩合合成了水杨醛对甲氧基苯甲酰腙(1-H2L)、水杨醛对甲基苯甲酰腙(2-H2L)、水杨醛对溴基苯甲酰腙(3-H2L) 3种配体,以Pr(NO3)3为原料,合成了水杨醛酰腙系列镨稀土配合物,经红外光谱、紫外光谱等分析手段对该类配合物的结构进行表征,配体在3 136~3 141 cm-1出现羟基ν(OH)伸缩振动峰,在配合物的红外光谱中消失,配合物在3 330~3 368 cm-1之间的吸收峰归属为结晶的H2O的ν(O-H)羟基弯曲振动吸收峰,配合物在与配体对应的3 140 cm-1均不出现羟基吸收峰,三种配体及配合物的吸收波形相似,反映出配体及配合物的结构基本一致,但配体与配合物的吸收波峰相差较大,据此可推测配体已经配位。采用荧光分光光度计测定了该类配合物的荧光光谱,并讨论了配体取代基的变化对荧光强度的影响。配体分别在352,369,365和417 nm波长监测下,于517 nm处出现发射峰。其中3-H2L的荧光强度最高。配合物均在470 nm的蓝光激发下,分别于608和617 nm出现镨的电偶极跃迁特征发射峰,归属于3P03F2跃迁。配合物均可被470 nm蓝光激发,在608~617 nm处有较好的红光发射,该类荧光粉有望应用于OLED上进行应用。  相似文献   

5.
合成了铕、铽-2-噻吩甲酸的二元配合物和铕、铽-2-噻吩甲酸-2,2′-联吡啶的三元配合物,并对它们进行了元素分析、稀土络合滴定、摩尔电导测定,确定了配合物组成分别为REL3·2H2O及REL3 L′·C2H5OH(RE=Eu,Tb; L=2-噻吩甲酸、L′=2,2′-联吡啶), 测定了配体及配合物的IR谱、1H NMR谱及荧光光谱。IR谱和1H NMR谱测定表明,配体2-噻吩甲酸羧基氧、配体邻菲咯啉2个氮原子与稀土离子配位。荧光光谱实验表明,高氯酸铕和高氯酸铽分别与2,2′-联吡啶和2-噻吩甲酸反应形成的三元配合物的荧光明显强于二元配合物。  相似文献   

6.
三元配合物Eu(BA)3PIP和 Eu(BA)3phen的制备与发光性质   总被引:1,自引:1,他引:0       下载免费PDF全文
合成了邻菲罗啉(phen)衍生物2-苯基-咪唑并 -1,10-菲罗啉(PIP),并以其为第二配体,苯甲酸(BA)为第一配体,制备出新型稀土铕三元有机配合物Eu(BA)3PIP;在相同条件下,第一配体不变,1,10-菲罗啉为第二配体,还制备出Eu(BA)3phen。采用元素分析、红外光谱、热重和差热分析等技术对合成的配体PIP及配合物Eu(BA)3PIP和Eu(BA)3phen进行了表征。通过发光光谱研究了配合物的发光性质,结果表明第二配体PIP有较大的共轭体系,在紫外光激发下,配合物中的配体可将吸收的能量传递给稀土Eu3+离子,表现出较强的Eu3+离子的特征发射。两种配合物相比,Eu(BA)3PIP的发光强度明显大于Eu(BA)3phen的发光强度,说明适宜的第二配体对配合物有很好的敏化发光作用。  相似文献   

7.
基于邻菲咯啉的反应型三元铕配合物的合成与荧光性质   总被引:1,自引:0,他引:1  
以二苯甲酰甲烷(HDBM)为第一配体,5-丙烯酰胺基-1,10-菲咯啉(Aphen)为活性第二配体,制备了新的反应型三元铕配合物Eu(DBM)3Aphen。通过元素分析、红外光谱和热分析对配合物进行了组成确定,采用紫外光谱、荧光光谱、荧光寿命和荧光量子产量研究了配合物的光物理性能。结果表明,在紫外光激发下,配合物Eu(DBM)3Aphen能发射Eu3+的特征荧光,其荧光发射强度、单色性、荧光寿命和荧光量子产率等均显著高于文献报道的丙烯酸配合物Eu(DBM)2AA的相应数值,表明配合物Eu(DBM)3Aphen不仅可作为潜在的红色发光材料,还可作为反应型的配合物,为制备具有优异发光性能的稀土聚合物提供了一条新的途径。  相似文献   

8.
通过乙二胺四乙酸双酸酐、二氯磷酸酯与多甘醇共缩聚,制得一系列三元共聚物配体.用配体与三氯化铁反应,得到相应的铁配合物.表征了配体和配合物的化学结构,测试了配合物的纵向弛豫速率,并考察了配合物的急性毒性和磁共振成象增强作用.  相似文献   

9.
室温下,通过双核配合物[Cu(dppm)(NO3)]2 (dppm=双二苯基膦甲烷)与四苯基硼钠在甲醇和二氯甲烷混合溶剂中反应制备了三核铜(Ⅰ)配合物[Cu3(dppm)3(NO3)(OH)](NO3),经过红外光谱、热重分析、核磁和ES-MS等现代分析手段表征了配合物的物理化学性质,并进一步研究了配合物在室温下的荧光光谱特征。  相似文献   

10.
采用Claisen缩合反应合成了一种新型的β-二酮化合物1-(4-溴苯)-3-苯基丙烷-1,3-二酮(L),并以其为第一配体,邻菲罗啉(Phen)为第二配体,合成出新型稀土Eu(Ⅲ)三元配合物。通过元素分析、红外光谱、紫外光谱、荧光光谱对合成的配体及三元配合物进行了表征。红外光谱的分析表明:配体L含有β-二酮结构,且烯醇式含量高;配合物中L的氧原子以及Phen中的氮原子与稀土离子进行了配位。紫外光谱的分析表明配合物中的能量传递主要来自第一配体。通过荧光光谱研究了配合物的发光性质,结果显示配合物表现出Eu3+的特征发射,主发射峰为Eu3+的5D0 →7F2发射,属于窄带发射,单色性较好,是具有潜在应用价值的红色发光材料。  相似文献   

11.
在乙醇溶液中以邻菲咯啉(phen)、2,2’-联吡啶(bipy)和对氨基马尿酸(PAH,HL)为配体与铽离子(Tb(Ⅲ))合成了二元和三元稀土配合物。通过元素分析、差热-热重分析、紫外光谱、红外光谱分析,确定了配合物的组成为TbL3(1)、TbL3·phen·H2O(2)和TbL3·bipy·H2O(3),并讨论了配合物1~3的谱学性质和荧光性能。推测出羧基中的氧原子以桥式双齿的形式与稀土离子配位。由红外光谱和热分析测试确定的配合物1及配合物2中的水分子未参与配位。研究表明,铽配合物在489,583和621 nm处出现发射峰,它们分别归属于5D4→7F6,5D4→7F5,5D4→7F4和5D4→7F3的跃迁。其中544 nm处5D4→7F5跃迁的强度最强,配体的共平面性和共轭性越大,配合物的荧光性能越高,三元配合物TbL3·phen·H2O和TbL3·bipy·H2O的荧光强度优于二元配合物TbL3的荧光强度。  相似文献   

12.
通过乙二胺四乙酸双酸酐、二氯磷酸酯与多甘醇共缩聚,制得一系列三元共聚物配体.用配体与三氯化铁反应,得到相应的铁配合物.表征了配体和配合物的化学结构,测试了配合物的纵向弛豫速率,并考察了配合物的急性毒性和磁共振成象增强作用.  相似文献   

13.
通过二乙三胺五乙酸单环酸酐(DTPA-MA)分别与L-赖氨酸的十八酯、十六酯、十四酯和十二酯的双酰化反应, 制得四种含有双DTPA螯合单元的新型配体. 它们与GdCl3·6H2O配合得到相应的双核钆(Ⅲ)配合物. 表征了配体和配合物的结构, 测试了配合物的纵向弛豫效能(R1). 结果表明: 这四种新钆配合物的R1都高于Gd-DTPA.  相似文献   

14.
报道我们对某些V/S,V/Fe/S和Mn/O簇合物溶液化学的核磁研究.(Et4N)[V4S4(C4H8NCS2)6](1)的1H NMR谱包含三个宽峰,δ4.77,5.17和7.57,分别归属为端基与桥基配体的α-H.游离配体信号的出现表明了溶液中发生配体与溶剂分子的交换反应.对一系列[VFe3S4(R2 NCS2)4]-簇合物(R2=OC4H8(2),Et2(3))进行了1H NMR表征.钒与三个铁中心的配体氢谱被分别归属.对NMR谱的时间跟踪发现位于δ19.6(2)以及δ34.2(3)的信号逐渐增长,这意味着新物种形成.合成反应的动态NMR跟踪指认了新物种为Fe4S4(R2 NCS2)4.提出了溶液中簇骼金属原子交换机理.包含H2O和NO3配体的单核锰bpy配合物(4)的氢谱指示出这些单齿配体的可交换性.它促使配合物4成为含有两个单核Mn分子的包容化合物.  相似文献   

15.
以两种不同结构的羧酸苯乙酸和苯基羟基乙酸与氯化铽为原料,采用低温固相反应合成了两种羧酸铽配合物。经元素分析、稀土络合滴定、摩尔电导确定了配合物的组成为: Tb(L1)3·H2O,Tb(L2)3·4H2O(L1= C6H5 CH COO- ,L2=C6H5CH(OH)COO-)。测定了配体及配合物的IR谱、1H NMR及配体的磷光光谱和铽配合物荧光激发和发射光谱。根据磷光发射光谱数据计算了配体的三重态能级值。比较两个配合物的荧光发射主峰5D4→7F5强度: 苯基羟基乙酸铽为苯乙酸铽的5倍。由此可见在配体亚甲基上引入拉电子基团羟基,将会扩大共轭体系π电子的离域范围,提高能量传递效率,提高稀土离子的发光强度。  相似文献   

16.
以水杨醛为原料,通过与混酸作用制备了5-硝基水杨醛,将其与盐酸氨基脲缩合制备出一种Schiff碱配体, 用Cu(Ⅱ)和Zn(Ⅱ)分别与配体在70 ℃左右的恒温水浴中反应1.5 h,合成出了新型Schiff碱配合物。用元素分析、红外光谱、紫外光谱、差热热重、摩尔电导率、核磁共振等分析方法对化合物进行表征和测试,采用蛋氨酸光照法测定了配合物对超氧离子的催化歧化作用。结果表明,该Schiff碱配体及其配合物,组成确定,热力学稳定性高,在核黄素光照产生-2的体系中,配合物都表现出良好的生物活性,对超氧离子有很强的催化歧化作用,尤其是双配体铜配合物活性最强,对人红细胞内血红蛋白具有一定的保护作用。  相似文献   

17.
合成了3-羧基水杨醛缩1,2,4-三唑席夫碱配体(L)及其三核Cu3+配合物(L-Cu)。通过元素分析、1H NMR、IR、MS进行组成和结构表征。采用平皿法测试配体及其三核铜配合物对单子叶植物玉米的生长调节活性。结果表明,配体及其三核铜配合物在低浓度下均对玉米的生长调节显示促进作用,高浓度下显示抑制作用,且配合物对玉米的生长调节作用强于配体。  相似文献   

18.
合成了新的配体安息香缩苯胺和新的铕配合物Eu(BZA)3phen,并用元素分析(EA),IR,1H NMR和UV对配合物进行了表征;配合物Eu(BZA)3phen在波长310 nm激发下,发出以铕的特征发谢谱线612 nm左右为主的强荧光,对应跃迁为5D0→7F2;安息香缩苯胺对铕离子具有敏化作用,是铕配合物的良好配体。  相似文献   

19.
合成了稀土Tb-N-苯基邻氨基苯甲酸-1,10-菲咯啉二元、三元配合物。通过元素分析确定二元配合物的组成为TbL3·4H2O,三元配合物的组成为TbL3phen·2H2O(L: N-苯基邻氨基苯甲酸根,phen: 1,10-菲咯啉),讨论了两种配合物的谱学性质。通过荧光光谱测试发现,形成的TbL3·4H2O二元配合物的荧光强度明显降低,1,10-菲咯啉作为第二配体引入后,使Tb3+的发光强度继续降低,这说明了Tb3+的发光强度与配体的结构有关,通过结构、能量传递和能量匹配对此做了进一步的解释。  相似文献   

20.
通过大分子反应将苯甲酸(BA)键合在聚苯乙烯(PS)侧链, 制得芳羧酸功能化的聚苯乙烯PSBA。以PSBA为大分子配基, 以邻菲啰啉(Phen)为小分子配体, 与Tb(Ⅲ)离子配位, 分别制备了二元配合物PS-(BA)3-Tb(Ⅲ)与三元配合物PS-(BA)1-Tb(Ⅲ)-(Phen)2及PS-(BA)1-Tb(Ⅲ)-(Phen)3,采用红外光谱(FTIR)和紫外吸收光谱(UV) 对配合物进行了表征, 深入研究了配合物(溶液与薄膜)的荧光发射性能。 研究结果表明, 大分子配基PSBA与Tb(Ⅲ)离子所形成的二元或三元高分子-稀土配合物均能发射出很强的Tb(Ⅲ)离子特征荧光, 即键合在PSBA侧链的配基BA能有效地敏化Tb(Ⅲ)离子的荧光发射。与二元配合物相比较, 以小分子Phen为第二配体所形成的两种三元配合物具有强度更高的荧光发射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号