首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Scandinavian surface (surfactant) and colloid science owes much of its success to Per Ekwall and Björn Lindman. In this review the main topics shared by their research groups at Åbo Akademi University in Finland and at Lund University in Sweden are described. The nature of surface active substances (cosolvents, co-surfactants and surfactants) and microemulsions are evaluated. It is shown that the properties of medium-chain length surfactants differ dramatically from long-chain surfactants. The phase equilibriums of binary systems are related to the phase equilibriums of ternary and quaternary systems referred to as microemulsions or more recently also as nanoemulsions. A distinction is made between hydrotrope liquids, detergentless microemulsions, surfactant mixture systems and microemulsions. Three component systems are assembled to “true” quaternary microemulsions. An exceptionally comprehensive network of thermodynamic parameters describing molecular site exchange and micelle formation are derived and related mutually. Gibbs free energy, enthalpy, entropy, volume, heat capacity, expansivity and compressibility can be used to illustrate the degree of aggregation cooperativity and to evaluate whether micelle formation is of a first-, second- or intermediate order phase transition. Theoretical simulations and experimental results show that the associate structures of medium-chain length surfactants are quite open and may be deformed due to small aggregation numbers. The self-assembly occurs over a number of distinct steps at a series of experimentally detectable critical concentrations. Despite the low aggregation tendency their phase behavior equals those of long-chain homologs in surfactant mixture and microemulsion systems. A number of models describing the self-assembly are reviewed. Nuclear magnetic resonance (shift, relaxation rate and diffusion), Laser Raman and infrared spectroscopies were chosen as key instruments for molecular interaction characterization since they were used in the collaboration between the research groups in Åbo and in Lund. A new method is introduced in order to evaluate the traditional procedure for extracting limiting parameters which also enables an illustration of the degree of cooperativity. The focus is laid mainly on aqueous, alcoholic, saline and, to a limited extent oil phases of one-, two-, three- and four component systems of water–sodium carboxylates–alcohol–oil. The extensive thermodynamic characterization of these liquid phases and liquid crystalline phases is left out due to space restrictions.  相似文献   

2.
3.
4.
A general feature of temperature-induced reversible denaturation of small globular proteins is its all-or-none character. This strong cooperativity leads to think that protein molecules, possessing only two accessible thermodynamic states, the native and the denatured one, resemble ‘crystal molecules’ that melt at raising temperature. An analysis, grounded on mean field theory, allows to conclude that the two-state transition is a first-order phase transition. The implication of this conclusion are briefly discussed.  相似文献   

5.
We use a coarse-grained solvent model to study the self-assembly of two nanoscale hydrophobic particles in water. We show how solvent degrees of freedom are involved in the process. By using tools of transition path sampling, we elucidate the reaction coordinates describing the assembly. In accord with earlier expectations, we find that fluctuations of the liquid-vapor-like interface surrounding the solutes are significant, in this case leading to the formation of a vapor tunnel between the two solute particles. This tunnel accelerates assembly. While considering this specific model system, the approach we use illustrates a methodology that is broadly applicable.  相似文献   

6.
立足于分子自组装单层膜的制备及结构, 讨论了分子自组装单层膜的头基基团与基底的作用机理、 主链与环境的温度依赖关系, 特别是其端基基团的化学性质及构象对表面浸润行为的影响. 重点讨论了分子自组装单层膜的端甲基基团对表面能的贡献、 极性端基基团与水分子之间的相互作用以及自组装单层膜表面的分子尺寸粗糙度对表面浸润的影响. 最后, 基于理论和实验基础对以上问题提出新的认知与看法, 并对未来该领域发展的机遇与挑战进行了展望.  相似文献   

7.
The creation of smart, self-assembling materials that undergo morphological transitions in response to specific physiological environments can allow for the enhanced accumulation of imaging or drug delivery agents based on differences in diffusion kinetics. Here, we have developed a series of self-assembling peptide amphiphile molecules that transform either isolated from molecules or spherical micelles into nanofibers when the pH is slightly reduced from 7.4 to 6.6, in isotonic salt solutions that simulate the acidic extracellular microenvironment of malignant tumor tissue. This transition is rapid and reversible, indicating the system is in thermodynamic equilibrium. The self-assembly phase diagrams show a single-molecule-to-nanofiber transition with a highly concentration-dependent transition pH. However, addition of a sterically bulky Gd(DO3A) imaging tag on the exterior periphery shifts this self-assembly to more acidic pH values and also induces a spherical micellar morphology at high pH and concentration ranges. By balancing the attractive hydrophobic and hydrogen-bonding forces, and the repulsive electrostatic and steric forces, the self-assembly morphology and the pH of transition can be systematically shifted by tenths a pH unit.  相似文献   

8.
The laboratory experiment presented in this paper focuses on using differential scanning calorimetry to determine the calorimetric enthalpy and cooperativity of the gel to liquid crystalline phase transition in hydrated lipid bilayers as a function of cholesterol content. The procedure and analysis are appropriate for junior-and senior-level physics and biophysical chemistry courses in the undergraduate curriculum. The laboratory is used to emphasize the use of thermodynamic data to obtain information about structure-function relationships in biological systems. The experimental results are directly related to the authors ongoing research in lipid bilayer structure characterization and applications of hydrated lipid bilayers as model systems for the interpretation of MRI contrast. The laboratory is easily modified to study the effects of other conditions, such as degree of hydration, pH, and composition, on the thermodynamic behavior of lipid bilayers.  相似文献   

9.
10.
11.
分子组装的范畴和复杂性远歹乇于合成反应,但是它们有着相同目标,即高选择性和高效率地创造新物质和制备新功能材料.因此,我们尝试将合成中广泛应用的催化概念拓展至组装研究,提出用于调控和加速组装过程的催组装(cassemblysis)的新思路.为此,我们将迄今泛用的自组装、助组装等术语重新进行规范和分类,即所有的分子组装可分为自组装和助组装.绝大多数组装属于助组装,这可进一步分为催组装、共组装和外场助组装3大类.催组装中的催组剂(cassemblyst)类似于合成中的催化剂,可在不改变总吉布斯自由能变化的条件下加速组装过程,催组装因此有望成为在分子以上层次高选择性且高效率地创造新物质的最佳途径.一些催组装体系在组装之后还会进一步进行化学耦联反应,由此显著提高产物的稳定性,组装与耦联总过程可称为催组联(catassemblysis).我们分别在小分子和生物大分子两个层次上,分析说明了迄今已被不自觉使用的催组装和催组联的一些典型事例,提出了光电催组装的设想,比较了与催组装关联的纳米粒子组装体系,探讨了与催组装相关的简要模型和机理.本:炙强调,在开展可控组装研究中,不仅要设计与合成各种新组装基元,而且要注重构建催组剂和催组联剂,发展催组装的实验和理论方法学,揭示催组剂作用于组装基元的机理,将有望推动可控组装在创造新物质和制备新功能材料方面发挥更大作用.  相似文献   

12.
Fine-tuning the thermodynamic self-assembly of molecules via volatile solid additives has emerged to be an effective way to construct high-performance organic solar cells. Here, three-dimensional structured solid molecules have been designed and applied to facilitate the formation of organized molecular assembly in the active layer. By means of systematic theory analyses and film-morphology characterizations based on four solid candidates, we preselected the optimal one, 4-fluoro-N,N-diphenylaniline (FPA), which possesses good volatility and strong charge polarization. The three-dimensional solids can induce molecular packing in active layers via strong intermolecular interactions and subsequently provide sufficient space for the self-reassembly of active layers during the thermodynamic transition process. Benefitting from the optimized morphology with improved charge transport and reduced energy disorder in the FPA-processed devices, high efficiencies of over 19 % were achieved. The strategy of three-dimensional additives inducing ordered self-assembly structure represents a practical approach for rational morphology control in highly efficient devices, contributing to deeper insights into the structural design of efficient volatile solid additives.  相似文献   

13.
In this Article, we report the dielectrophoretic assembly of colloidal particles and show how the kinetics of assembly and degree of ordering depend on the particle size, charge, solution ionic strength, and field strength and frequency. A special dielectrophoresis (DEP) sample cell is constructed and validated to quantitatively measure directed self-assembly via sequential light scattering and optical microscopy measurements. Our results confirm the recently established scaling for the order-disorder transition and extend it to higher scaled frequencies. The limiting scaling of the order-disorder transition and particle electrophoretic mobility are correctly predicted by the standard electrokinetic model (SEKM). In particular, the order-disorder transition line is predicted from the particle properties using a recently proposed empirical scaling law and the SEKM over an order of magnitude in particle size.  相似文献   

14.
An efficient implicit-solvent model for self-assembled lipid bilayers is presented and analyzed using Langevin molecular dynamics simulations. The model is based on soft interactions between particles and short-range attractive interaction between lipid tails, leading for the self-assembly of a lipid bilayer without an explicit solvent. This allows for efficient simulations of large membranes over long times. The model exhibits a fluid phase at high temperatures and a gel phase at low temperatures, identified with the Lbeta-phase. The melting transition is investigated via analysis of the diffusivity of the lipid molecules, the chain-orientational order parameter, the sixfold bond-orientational order parameter, and the positional and bond-orientational correlation functions. The analysis suggests the existence of a hexatic phase over a narrow range of temperatures around the melting transition. The elastic properties of the membrane in the fluid phase are also investigated.  相似文献   

15.
A thermodynamic model for describing the thermal expansion of intercalated graphite is proposed. An individual intercalate molecule (which, being in an electron state with different energy, can be bound to graphene planes by two elastic bonds of similar stiffness, or move freely between the planes, striking elastically against the walls) is considered as an element of a statistical ensemble. A relation for the statistical distribution of the states of intercalate molecules in intercalated graphite is obtained. The existence of a phase transition between the states that describes the formation of thermally expanded graphite is demonstrated by analyzing its distribution.  相似文献   

16.
The solution phase behavior of short, strictly alternating multiblock copolymers of type (A(n)B(n))(m) was studied using lattice Monte Carlo simulations. The polymer molecules were modeled as flexible chains in a monomeric solvent selective for block type A. The degree of block polymerization n and the number of diblock units per chain m were treated as variables. We show that within the regime of parameters accessible to our study, the thermodynamic phase transition type is dependent on the ratio of m / n. The simulations show microscopic phase separation into roughly spherical aggregates for m / n ratios less than a critical value and first-order macroscopic precipitation otherwise. In general, increasing m at fixed n, or n at fixed m, promotes the tendency toward macroscopic phase precipitation. The enthalpic driving force of phase change is found to universally scale with chain length for all multiblock systems considered and is independent of the existence of a true phase transition. For aggregate forming systems at low amphiphile concentrations, multiblock chains are shown to self-assemble into intramolecular, multichain clusters. Predictions for microstructural dimensions, including critical micelle concentration, equilibrium size, shape, aggregation parameters, and density distributions, are provided. At increasing amphiphile density, interaggregate bridging is shown to result in the formation of networked structures, leading to an eventual solution-gel transition. The gel is swollen and consists of highly interconnected aggregates of approximately spherical morphology. Qualitative agreement is found between experimentally observed physical property changes and phase transitions predicted by simulations. Thus, a potential application of the simulations is the design of multiblock copolymer systems which can be optimized with regard to solution phase behavior and ultimately physical and mechanical properties.  相似文献   

17.
The self-assembly of molecules into desired architectures is currently a challenging subject for the development of supramolecular chemistry. Here we present a facile "breath figure" assembly process through the use of the self-assembled peptide building block diphenylalanine (L-Phe-L-Phe, FF). Macroporous honeycomb scaffolds were fabricated, and average pore size could be regulated, from (1.00±0.18) μm to (2.12±0.47) μm, through the use of different air speeds. It is indicated that the honeycomb formation is humidity-, solvent-, concentration-, and substrate-dependent. Moreover, water molecules introduced from "breath figure" intervene in the formation of hydrogen bonds during FF molecular self-assembly, which results in a hydrogen bond configuration transition from antiparallel β sheet to parallel β sheet. Meanwhile, as a result of the higher polarity of water molecules, the FF molecular array is transformed from laminar stacking into a hexagonal structure. These findings not only elucidate the FF molecule self-assembly process, but also strongly support the mechanism of breath figure array formation. Finally, human embryo skin fibroblast (ESF) culture experiments suggest that FF honeycomb scaffolds are an attractive biomaterial for growth of adherent cells with great potential applications in tissue engineering.  相似文献   

18.
The two main steps of the membranolytic activity of detergents: 1) the partitioning of detergent molecules in the membrane and 2) the solubilisation of the membrane are systematically investigated. The interactions of two bile salt molecules, sodium cholate (NaC) and sodium deoxycholate (NaDC) with biological phospholipid model membranes are considered. The membranolytic activity is analysed as a function of the hydrophobicity of the bile salt, ionic strength, temperature, membrane phase properties, membrane surface charge and composition of the acyl chains of the lipids. The results are derived from calorimetric measurements (ITC, isothermal titration calorimetry). A thermodynamic model is described, taking into consideration electrostatic interactions, which is used for the calculation of the partition coefficient as well as to derive the complete thermodynamic parameters describing the interaction of detergents with biological membranes (change in enthalpy, change in free energy, change in entropy etc). The solubilisation properties are described in a so-called vesicle-to-micelle phase transition diagram. The obtained results are supplemented and confirmed by data obtained from other biophysical techniques (DSC differential scanning calorimetry, DLS dynamic light scattering, SANS small angle neutron scattering).  相似文献   

19.
Employing actinic light to alter/stabilise a particular thermodynamic phase via the photo-isomerisation of the constituent molecules is an interesting tool to investigate soft matter from a new dimension. This article focuses on our recent results on several aspects of these non-equilibrium phase transitions, which are isothermal in nature. We specifically discuss (i) the influence of different parameters, such as confinement, applied electric field, pressure etc., on the dynamics associated with both the photochemical transition driving the equilibrium nematic to the non-equilibrium isotropic phase and the thermal back relaxation recovering the nematic phase, (ii) unique light-driven disorder–order transition in a reentrant system, (iii) dynamic self-assembly of the smectic A phase, which is stabilised only in the presence of actinic light, (iv) novel temperature-intensity phase diagrams and an example of primary and secondary photo-ferroelectric effects in an antiferroelectric smectic C system. These results highlight the fact that the actinic light can be used as a new tool to study phase transitions and the associated critical phenomena that could also bring about effects that are not seen in equilibrium situations.  相似文献   

20.
Cooperative protein–ligand binding is an essential biochemical process. In this work, we introduce a model that can simulate the emergence of such phenomenon in the binding kinetics. It is based on the inability of the ligand molecules to fully utilize all the available binding sites due to some restriction, realized here in terms of a model parameter, called the restriction parameter. The theory is developed at the level of a single oligomeric protein molecule interacting with a ligand, maintained at a constant concentration, using a chemical master equation. The model provides stepwise binding constants related to the restriction parameter. The relative magnitudes of these constants, when compared to the Hill coefficients measuring cooperativity, give a physical insight in the development of the cooperative behavior and can also act as a reference frame. This can be useful for an alternative theoretical characterization of cooperativity in oligomeric proteins with large number of binding sites and arbitrary binding constants. We establish this point here by taking a tetrameric protein as a case study. A stochastic thermodynamic analysis is also performed, highlighting the energy–entropy contribution to the overall free energy change due to protein–ligand interaction for various cases of restricted binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号