首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the Born-Oppenheimer (BO) and Renner-Teller (RT) quantum dynamics of the reaction (14)N((2)D)+(1)H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S), considering the NH(2) electronic states X (2)B(1) and A (2)A(1). These states correlate to the same (2)Pi(u) linear species, are coupled by RT nonadiabatic effects, and give NH(X (3)Sigma(-))+H and NH(a (1)Delta)+H, respectively. We develop the Hamiltonian matrix elements in the R embedding of the Jacobi coordinates and in the adiabatic electronic representation, using the permutation-inversion symmetry, and taking into account the nuclear-spin statistics. Collision observables are calculated via the real wave-packet (WP) and flux methods, using the potential-energy surfaces of Santoro et al. [J. Phys. Chem. A 106, 8276 (2002)]. WP snapshots show that the reaction proceeds via an insertion mechanism, and that the RT-WP avoids the A (2)A(1) potential barrier, jumping from the excited to the ground surface and giving mainly the NH(X (3)Sigma(-)) products. X (2)B(1) BO probabilities and cross sections show large tunnel effects and are approximately four to ten times larger than the A (2)A(1) ones. This implies a BO rate-constant ratio k(X (2)B(1))k(A (2)A(1)) approximately 10(5) at 300 K, i.e., a negligible BO formation of NH(a (1)Delta). When H(2) is rotationally excited, RT couplings reduce slightly the X (2)B(1) reaction observables, but enhance strongly the A (2)A(1) reactivity. These couplings are important at all collision energies, reduce the collision threshold, and increase remarkably reaction probabilities and cross sections. The RT k(A (2)A(1)) is thus approximately 3.3 order of magnitude larger than the BO value, and degeneracy-averaged, initial-state-resolved rate constants increase by approximately 13% and by approximately 47% at 300 and 500 K, respectively. Owing to an overestimation of the X (2)B(1) potential barrier, the calculated thermal rate is too low with respect to that observed, but we obtain a good agreement by shifting down the calculated cross section.  相似文献   

2.
We present Coriolis coupling effects on the initial-state-resolved dynamics of the insertion reaction N((2)D)+H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-) and a (1)Delta)+H((2)S), without and with nonadiabatic Renner-Teller (RT) interactions between the NH(2) X (2)B(1) and A (2)A(1) electronic states. We report coupled-channel (CC) Hamiltonian matrix elements, which take into account both Coriolis and RT couplings, use the real wave-packet and flux methods for calculating initial-state-resolved reaction probabilities, and contrast CC with centrifugal-sudden (CS) results. Without RT interactions, Coriolis effects are rather small up to J=40, and the CS approximation can be safely employed for calculating initial-state-resolved, integral cross sections. On the other hand, RT effects are associated with rather large Coriolis couplings, mainly near the linearity of NH(2), and the accuracy of the CS approximation thus breaks down at high collision energies, when the reaction starts on the excited A (2)A(1) surface. We also present the CC-RT distribution of the X (3)Sigma(-) and a (1)Delta electronic states of the NH products.  相似文献   

3.
The rate coefficient of the reaction NH(X (3)Sigma(-)) + H((2)S)-->(k(1a) )N((4)S) + H(2)(X (1)Sigma(g) (+)) is determined in a quasistatic laser-flash photolysis, laser-induced fluorescence system at low pressures (2 mbar< or =p< or =10 mbar). The NH(X) radicals are produced via the quenching of NH(a(1)Delta) (obtained by photolyzing HN(3)) with Xe whereas the H atoms are generated in a H(2)He microwave discharge. The NH(X) concentration profile is measured under pseudo-first-order condition, i.e., in the presence of a large excess of H atoms. The room temperature rate coefficient is determined to be k(1a) = (1.9 +/- 0.5) x 10(12) cm(3) mol(-1) s(-1). It is found to be independent of the pressure in the range considered in the present experiment. A global potential energy surface for the (4)A(") state is calculated with the internally contracted multireference configuration interaction method and the augmented correlation consistent polarized valence quadruple zeta atomic basis. The title reaction is investigated by classical trajectory calculations on this surface. The theoretical room temperature rate coefficient is k(1a) = 0.92 x 10(12)cm(3) mol(-1) s(-1). Using the thermodynamical data for the atoms and molecules involved, the rate coefficient for the reverse reaction, k(-1a), is also calculated. At high temperatures it agrees well with the measured k(-1a).  相似文献   

4.
The rate coefficient of the reaction NH(X (3)Sigma(-))+D((2)S)-->(k(1) )products (1) is determined in a quasistatic laser-flash photolysis, laser-induced fluorescence system at low pressures. The NH(X) radicals are produced by quenching of NH(a (1)Delta) (obtained in the photolysis of HN(3)) with Xe and the D atoms are generated in a D(2)/He microwave discharge. The NH(X) concentration profile is measured in the presence of a large excess of D atoms. The room-temperature rate coefficient is determined to be k(1)=(3.9+/-1.5) x 10(13) cm(3) mol(-1) s(-1). The rate coefficient k(1) is the sum of the two rate coefficients, k(1a) and k(1b), which correspond to the reactions NH(X (3)Sigma(-))+D((2)S)-->(k(1a) )ND(X (3)Sigma(-))+H((2)S) (1a) and NH(X (3)Sigma(-))+D((2)S)-->(k(1b) )N((4)S)+HD(X (1)Sigma(g) (+)) (1b), respectively. The first reaction proceeds via the (2)A(") ground state of NH(2) whereas the second one proceeds in the (4)A(") state. A global potential energy surface is constructed for the (2)A(") state using the internally contracted multireference configuration interaction method and the augmented correlation consistent polarized valence quadrupte zeta atomic basis. This potential energy surface is used in classical trajectory calculations to determine k(1a). Similar trajectory calculations are performed for reaction (1b) employing a previously calculated potential for the (4)A(") state. The calculated room-temperature rate coefficient is k(1)=4.1 x 10(13) cm(3) mol(-1) s(-1) with k(1a)=4.0 x 10(13) cm(3) mol(-1) s(-1) and k(1b)=9.1 x 10(11) cm(3) mol(-1) s(-1). The theoretically determined k(1) shows a very weak positive temperature dependence in the range 250< or =TK< or =1000. Despite the deep potential well, the exchange reaction on the (2)A(") ground-state potential energy surface is not statistical.  相似文献   

5.
We report a dynamics study of the reaction N((2)D) + H(2) (v=0, j=0-5) --> NH + H using the time-dependent quantum wave packet method and a recently reported single-sheeted double many-body expansion potential energy surface for NH(2)(1(2)A' ') which has been modeled from accurate ab initio multireference configuration-interaction calculations. The calculated probabilities for (v=0, j=0-5) are shown to display resonance structures, a feature also visible to some extent in the calculated total cross sections for (v=0, j=0). A comparison between the calculated centrifugal-sudden and coupled-channel reaction probabilities validate the former approximation for the title system. Rate constants calculated using a uniform J-shifting scheme and averaged over a Boltzmann distribution of rotational states are shown to be in good agreement with the available experimental values. Comparisons with other theoretical results are also made.  相似文献   

6.
The singlet-triplet transition moments are calculated for the NH radical by multiconfiguration self-consistent field (MCSCF) method with a quadratic response (QR) technique. The band systems in the visible region (b(1)Sigma(+)-->X(3)Sigma(-) and a(1)Delta-->X(3)Sigma(-)) of the NH radical are analyzed in comparison with previous ab initio treatments and with the recent experimental data in attempt to solve some discrepancies. The b(1)Sigma(+)-->X(3)Sigma(Omega)(-) transition moments ratio for the two spin sublevels Omega = 1 and Omega=0 of the ground state is well reproduced and the radiative lifetime of the b(1)Sigma(+) state (tau(b)=58 ms) is obtained in a good agreement with the experimental value tau(b)=53((-13)(+17)) ms. The A(3)Pi<--a(1)Delta transition probability is calculated for the first time and found to be in an excellent agreement with the recent optical pumping measurements of the NH radical in a molecular beam, where population transfer from the metastable a(1)Delta state to the ground X(3)Sigma(-) state is achieved. For the a(1)Delta-->X(3)Sigma(-) transition some improvement is achieved in comparison with the previous ab initio results, but the calculated radiative lifetime (tau(a)=3.9 s) is still much lower than the recent measurement provides (tau(a)=12.5 s). The zero field splitting and spin-rotation coupling constants are calculated for the ground state by different methods and advantage of the density functional theory is stressed.  相似文献   

7.
The recombination rate constants for the reactions NH2(X2B1) + NH2(X2B1) + M → N2H4 + M and NH2(X2B1) + H + M → NH3 + M, where M was CH4, C2H6, CO2, CF4, or SF6, were measured in the same experiment over presseure ranges of 1-20 and 7-20 Torr, respectively, at 296 ± 2 K. The NH2 radical was produced by the 193 nm laser photolysis of NH3. Both NH2 and NH3 were monitored simultaneously following the photolysis laser pulse. High-resolution time-resolved absorption spectroscopy was used to monitor the temporal dependence of both species: NH2 on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A2A1 ← (0,0,0)X2B1 electronic transition near 675 nm and NH3 in the IR on either of the inversion doublets of the qQ3(3) rotational transition of the ν1 fundamental near 2999 nm. The NH2 self-recombination clearly exhibited falloff behavior for the third-body collision partners used in this work. The pressure dependences of the NH2 self-recombination rate constants were fit using Troe’s parametrization scheme, k(inf), k(0), and F(cent), with k(inf) = 7.9 × 10(-11) cm3 molecule(-1) s(-1), the theoretical value calculated by Klippenstein et al. (J. Phys. Chem. A113, 113, 10241). The individual Troe parameters were CH4, k(0)(CH4) = 9.4 × 10(-29) and F(cent)(CH4) = 0.61; C2H6, k(0)(C2H6) = 1.5 × 10(-28) and F(cent)(C2H6) = 0.80; CO2, k(0)(CO2) = 8.6 × 10(-29) and F(cent)(CO2) = 0.66; CF4, k(0)(CF4) = 1.1 × 10(-28) and F(cent)(CF4) = 0.55; and SF6, k(0)(SF6) = 1.9 × 10(-28) and F(cent)(SF6) = 0.52, where the units of k0 are cm6 molecule(-2) s(-1). The NH2 + H + M reaction rate constant was assumed to be in the three-body pressure regime, and the association rate constants were CH4, (6.0 ± 1.8) × 10(-30); C2H6, (1.1 ± 0.41) × 10(-29); CO2, (6.5 ± 1.8) × 10(-30); CF4, (8.3 ± 1.7) × 10(-30); and SF6, (1.4 ± 0.30) × 10(-29), with units cm6 molecule(-1) s,(-1) and the systematic and experimental errors are given at the 2σ confidence level.  相似文献   

8.
The photodissociation of N(2)O at wavelengths near 130 nm has been investigated by velocity-mapped product imaging. In all, five dissociation channels have been detected, leading to the following products: O((1)S)+N(2)(X (1)Sigma), N((2)D)+NO(X (2)Pi), N((2)P)+NO(X (2)Pi), O((3)P) + N(2)(A (3)Sigma(+) (u)), and O((3)P) + N(2)(B (3)Pi(g)). The most significant channel is to the products O((1)S) + N(2)(X(1)Sigma), with strong vibrational excitation in the N(2). The O((3)P) + N(2)(A,B):N((2)D,(2)P) + NO branching ratio is measured to be 1.4 +/- 0.5, while the N(2)(A) + O((3)P(J)):N(2)(B) + O((3)P(J)) branching ratio is determined to be 0.84+/-0.09. The spin-orbit distributions for the O((3)P(J)), N((2)P(J)), and N((2)D(J)) products were also determined. The angular distributions of the products are in qualitative agreement with excitation to the N(2)O(D (1)Sigma(+)) state, with participation as well by the (3)Pi(v) state.  相似文献   

9.
The synthesis and characterization of the novel systems [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(H(2)O)].9H(2)O (1), [Cd(2)(H(2)N(CH(2))(2)NH(2))(5)][(Cd(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Br)].9H(2)O (2), and [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Cl)].9H(2)O (3) have been described. These materials represent a new class of solids that have been prepared by combining conventional coordination compounds with spherical polyoxovanadate clusters. The isomorphous structures of these hybrid solids consist of two-dimensional arrays of container cluster molecules [V(18)O(42)(X)] (X = H(2)O, Br-, Cl-) interlinked by the transition metal complex moieties [M(H(2)N(CH(2))(2)NH(2))(2)] (M = Zn, Cd). These compounds contain an unprecedented complex cation, [M(2)(H(2)N(CH(2))(2)NH(2))(5)](4+). Crystal data for 1: C(9)H(46)N(9)O(26)V(9)Zn(2), monoclinic space group P2(1)/m (No. 11), a = 12.3723(7) A, b = 20.9837(11) A, c = 15.8379(8) A, beta = 97.3320(10) degrees, Z = 4.  相似文献   

10.
In an attempt to explain the observed nightglow emission from OH(v=10) in the mesosphere that has the energy greater than the exothermicity of the H+O(3) reaction, potential energy surfaces were calculated for reactions of high lying electronic states of O(2)(A (3)Sigma(u) (+) and A' (3)Delta(u)) with atomic hydrogen H((2)S) to produce the ground state products OH((2)Pi)+O((3)P). From collinear two-dimensional scans, several adiabatic and nonadiabatic pathways have been identified. Multiconfigurational single and double excitation configuration interaction calculations show that the adiabatic pathways on a (4)Delta potential surface from O(2)(A' (3)Delta)+H and a (4)Sigma(+) potential surface from O(2)(A (3)Sigma(u) (+))+H are the most favorable, with the zero-point corrected barrier heights of as low as 0.191 and 0.182 eV, respectively, and the reactions are fast. The transition states for these pathways are collinear and early, and the reaction coordinate suggests that the potential energy release of ca. 3.8 eV (larger than the energy required to excite OH to v=10) is likely to favor high vibrational excitation.  相似文献   

11.
We report a laboratory measurement of the rate coefficient for the collisional removal of O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms. In the experiments, 266-nm laser light photodissociates ozone in a mixture of molecular oxygen and ozone. The photolysis step produces vibrationally excited O(2)(a(1)Delta(g)) that is rapidly converted to O(2)(X(3)Sigma(g) (-),upsilon=1-3) in a near-resonant electronic energy-transfer process with ground-state O(2). In parallel, a large amount of O((1)D) atoms is generated that promptly relaxes to O((3)P). Under the conditions of the experiments, only collisions with the photolytically produced O((3)P) atoms control the lifetime of O(2)(X(3)Sigma(g) (-),upsilon=1), because its removal by molecular oxygen at room temperature is extremely slow. Tunable 193-nm laser light monitors the temporal evolution of the O(2)(X(3)Sigma(g) (-),upsilon=1) population by detection of laser-induced fluorescence near 360 nm. The removal rate coefficient for O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is (3.2+/-1.0)x10(-12) cm(3) s(-1) (2sigma) at a temperature of 315+/-15 K (2sigma). This result is essential for the analysis and correct interpretation of the 6.3-mum H(2)O(nu(2)) band emission in the Earth's mesosphere and indicates that the deactivation of O(2)(X (3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is significantly faster than the nominal values recently used in atmospheric models.  相似文献   

12.
An alignment effect in the dissociative energy transfer reaction of Ar((3)P(2))+(X(2)O)(n)(X=N,H) was directly measured using an oriented Ar((3)P(2),M(J)=2) beam. The chemiluminescence intensity of N(2)(B,(3)Pi(g)) for (N(2)O)(n) and OH(A,(2)Sigma(+)) for (H(2)O)(n) was measured as a function of the magnetic orientation field direction in the collision frame. The relative reaction cross section for each magnetic substate in the collision frame, sigma(M(J) (') ), was determined. In both the reaction systems, it is observed that the dimer formation significantly enhances the alignment effect and decreases the reactivity, especially for sigma|1| and sigma|2|. A significant contribution of rank 4 moment is recognized in the dimer reaction.  相似文献   

13.
14.
The adiabatic potential energy surfaces for the lowest five electronic states of (3)A" symmetry for the H(+)+O(2) collision system have been obtained at the multireference configuration interaction level of accuracy using Dunning's correlation consistent polarized valence triple zeta basis set. The radial nonadiabatic coupling terms and the mixing angle between the lowest two electronic states (1 (3)A" and 2 (3)A"), which adiabatically correlate in the asymptotic limit to H((2)S)+O(2) (+)(X (2)Pi(g)) and H(+)+O(2)(X (3)Sigma(g)(-)), respectively, have been computed using ab initio procedures at the same level of accuracy to yield the corresponding quasidiabatic potential energy matrix. The computed strengths of the vibrational coupling matrix elements reflect the trend observed for inelastic vibrational excitations of O(2) in the experiments at collision energy of 9.5 eV. The quantum dynamics has been preformed on the newly obtained coupled quasidiabatic potential energy surfaces under the vibrational close-coupling rotational infinite-order sudden framework at the experimental collision energy of 9.5 eV. The present theoretical results for vibrational elastic/inelastic excitations of O(2) are in overall good agreement with the available experimental data obtained from the proton energy-loss spectra in molecular beam experiments [F. A. Gianturco et al., J. Phys. B 14, 667 (1981)]. The results for the complementary charge transfer processes are also presented at this collision energy.  相似文献   

15.
Experimental rate coefficients for the removal of NH(a (1)Delta) and ND(a (1)Delta) in collisions with H and D atoms are presented; all four isotope combinations are considered: NH+H, NH+D, ND+H, and ND+D. The experiments were performed in a quasistatic laser-flash photolysis/laser-induced fluorescence system at low pressures. NH(a (1)Delta) and ND(a (1)Delta) were generated by photolysis of HN(3) and DN(3), respectively. The total removal rate coefficients at room temperature are in the range of (3-5)x10(13) cm(3) mol(-1) s(-1). For two isotope combinations, NH+H and NH+D, quenching rate coefficients for the production of NH(X (3)Sigma(-)) or ND(X (3)Sigma(-)) were also determined; they are in the range of 1 x 10(13) cm(3) mol(-1) s(-1). The quenching rate coefficients directly reflect the strength of the Renner-Teller coupling between the (2)A(") and (2)A(') electronic states near linearity and so can be used to test theoretical models for describing this nonadiabatic process. The title reaction was modeled with a simple surface-hopping approach including a single parameter, which was adjusted to reproduce the quenching rate for NH+H; the same parameter value was used for all isotope combinations. The agreement with the measured total removal rate is good for all but one isotope combination. However, the quenching rates for the NH+D combination are only in fair (factor of 2) agreement with the corresponding measured data.  相似文献   

16.
Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data.  相似文献   

17.
The (15)N-labeled diammine(mu-oxo)ruthenium complex cis,cis-[(bpy)(2)(H(3)(15)N)Ru(III)ORu(III)((15)NH(3))(bpy)(2)](4+) ((2-(15)N)(4+)) was synthesized from cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) by using ((15)NH(4))(2)SO(4) and isolated as its perchlorate salt in 17% yield. A 1:1 mixture of (2-(15)N)(4+) and nonlabeled cis,cis-[(bpy)(2)(H(3)(14)N)Ru(III)ORu(III)((14)NH(3))(bpy)(2)](4+) were electrochemically oxidized in aqueous solution. The gaseous products (14)N(2) and (15)N(2) were formed in equimolar amounts with only a small amount of (14)N(15)N detected. This demonstrates that dinitrogen formation by oxidation of the diammine complex proceeds by intramolecular N---N coupling.  相似文献   

18.
A new global potential-energy surface for the ground electronic state of HO(2)(X(2)A(")) has been developed by three-dimensional cubic spline interpolation of more than 15 000 ab initio points, which were calculated at the multireference configuration-interaction level with Davidson correction using the augmented correlation-consistent polarized valence quadruple zeta basis set. Low-lying vibrational states were obtained in this new potential using the Lanczos method and assigned. The calculated vibrational frequencies are in much better agreement with the available experimental band origins than those obtained from a previous potential. In addition, rate constants for the H+O(2) <--> O + OH reactions were obtained using a wave-packet-based statistical model. Reasonably good agreement with experimental data was obtained. These results demonstrate the accuracy of the potential.  相似文献   

19.
Oxygen Rydberg time-of-flight spectroscopy was used to study the vacuum ultraviolet photodissociation dynamics of N(2)O near 130 nm. The O((3)P(J)) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. In agreement with previous work, we find that O((3)P(J)) formation following excitation to the repulsive N(2)O D((1)Sigma(+)) state produces the first two electronically excited states of the N(2) counterfragment, N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)). The O((3)P(J)) translational energy distribution reveals that the overall branching ratio between N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)) formation is approximately 1.0:1.0 for J = 1 and 2, with slightly less N(2)(B (3)Pi(g)) produced in coincidence with O((3)P(0)). The angular distributions were found to be independent of J and highly anisotropic, with beta = 1.5+/-0.2.  相似文献   

20.
A quasi-classical study of the endoergic Au(+)((1)S) + H(2)(X(1)Σ(g)(+)) → AuH(+) ((2)Σ(+)) + H((2)S) reaction, and isotopic variants, is performed to compare with recent experimental results [F. Li, C. S. Hinton, M. Citir, F. Liu, and P. B. Armentrout, J. Chem. Phys. 134, 024310 (2011)]. For this purpose, a new global potential energy surface has been developed based on multi-reference configuration interaction ab initio calculations. The quasi-classical trajectory results show a very good agreement with the experiments, showing the same trends for the different isotopic variants of the hydrogen molecule. It is also found that the total dissociation into three fragments, Au(+)+H+H, is the dominant reaction channel for energies above the H(2) dissociation energy. This results from a well in the entrance channel of the potential energy surface, which enhances the probability of H-Au-H insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号