首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The traditional approach used to predict the ability of a glassy matrix to maximally preserve the activity of a protein solute is the glass transition temperature (T(g)) of the glass. Recently it has been shown that the addition of a low T(g) diluent (glycerol) can rigidify the structure of a high T(g) glassy matrix in binary glycerol-trehalose glasses. The optimal density of glycerol in trehalose minimizes the average mean square displacements of non-exchangeable protons in the glass samples. The amount of glycerol added to a trehalose glass coincides with the maximal recovery of biological activity in a separate study using similar binary glass samples. In this study, we use molecular dynamics (MD) simulations to investigate the dynamics of a hydrated protein encased in glycerol, unary trehalose and binary glycerol-trehalose glasses. We have found that we are able to reproduce the rigidification of the glycerol-trehalose glassy matrix and that there is a direct correlation between bulk glass dynamics and the extent of atomic fluctuation of protein atoms. The detailed microscopic picture that emerges is that protein dynamics are suppressed mainly by inertia of the bulk glass and to a lesser extent specific interactions at the protein-solvent interface. Thus, the inertia of the glassy matrix may be an influential factor in the determination of pharmaceutically relevant formulations.  相似文献   

2.
We present results from kinetic Monte Carlo (KMC) simulations of diffusion in a model glass former. We find that the diffusion constants obtained from KMC simulations have Arrhenius temperature dependence, while the correct behavior, obtained from molecular dynamics simulations, can be super-Arrhenius. We conclude that the discrepancy is due to undersampling of higher-lying local minima in the KMC runs. We suggest that the relevant connectivity of minima on the potential energy surface is proportional to the energy density of the local minima, which determines the "inherent structure entropy." The changing connectivity with potential energy may produce a correlation between dynamics and thermodynamics.  相似文献   

3.
A polymer-diluent model exhibiting antiplasticization has been developed and characterized by molecular dynamics simulations. Antiplasticizer molecules are shown to decrease the glass transition temperature Tg but to increase the elastic moduli of the polymeric material in the low-temperature glass state. Moreover, the addition of antiplasticizing particles renders the polymer melt a stronger glass-forming material as determined by changes in the characteristic temperatures of glass formation, the fragility parameter D from fits to the Vogel-Folcher-Tamman-Hesse equation, and through the observation of the temperature dependence of the size of cooperatively rearranging regions (strings) in each system. The length of the strings exhibits a weaker temperature dependence in the antiplasticized glass-forming system than in the more fragile pure polymer, consistent with the Adam-Gibbs model of glass formation. Unexpectedly, the strings become increasingly concentrated in the antiplasticizer particles upon cooling. Finally, we discuss several structural indicators of cooperative dynamics, and find that the dynamic propensity (local Debye-Waller factor p) does seem to provide a strong correlation with local molecular displacements at long times. The authors also consider maps of the propensity, and find that the antiplasticized system exhibits larger fluctuations over smaller length scales compared to the pure polymer.  相似文献   

4.
Isothermal-isobaric molecular dynamics simulations are used to calculate the specific volume of models of different amorphous carbohydrates (glucose, sucrose, and trehalose) as a function of temperature. Plots of specific volume vs temperature exhibit a characteristic change in slope when the amorphous systems change from the glassy to the rubbery state. The intersection of the regression lines of data below (glassy state) and above (rubbery state) the change in slope provides the glass transition temperature (T(g)). These predicted glass transition temperatures are compared to experimental T(g) values as obtained from differential scanning calorimetry measurements. As expected, the predicted values are systematically higher than the experimental ones (about 12-34 K) as the cooling rates of the modeling methods are about a factor of 10(12) faster. Nevertheless, the calculated trend of T(g) values agrees exactly with the experimental trend: T(g)(glucose) < T(g)(sucrose) < T(g)(trehalose). Furthermore, the relative differences between the glass transition temperatures were also computed precisely, implying that atomistic molecular dynamics simulations can reproduce trends of T(g) values in amorphous carbohydrates with high quality.  相似文献   

5.
Functionally gradient polyisocyanurate-based structural materials in which the modulus of elasticity could be arbitrarily varied over a continuos range from 3 to 2000 MPa were prepared from hydroxy-terminated butadiene rubber and diphenylmethane diisocyanate. The materials are synthetically obtainable both via bulk polymerization (molding) and as composite materials with fillers of any type, including both highly porous compliant fillers that have no effect on the mechanical properties of the polymer matrix and reinforcing fillers, such as carbon and glass clothes. The trends in the main properties were studied; it was found that, over the entire range of elastic moduli relevant to the glass-to-rubber transition, the materials retain the elastic behavior inherent in polymer glasses, not the viscoelastic behavior characteristic of the transitional region between the glassy and rubbery states.  相似文献   

6.
Relaxation and aging behaviors in three supercooled liquids: m-toluidine, glycerol, and sucrose benzoate have been studied by shear stress relaxation experiments in the time domain above and below their nominal glass transition temperatures. For the equilibrium state, the current study provides new data on the behavior of organic complex fluids. The shape of the relaxation function as characterized by the stretching exponent beta is discussed considering that a time-temperature master curve can be constructed even though the beta's for the individual response curves at each temperature vary systematically. In the nonequilibrium state, isothermal physical aging experiments at different glassy structures reveal that the effect of the aging process on the mechanical shear relaxation in these simple glass formers is similar to that observed in polymeric and other systems. Departure from the Vogel-Fulcher-Tamman behavior after the samples have aged back to equilibrium in the glassy state is observed for m-toluidine and, less strongly, for glycerol but not for sucrose benzoate. An inherent structure-based energy landscape concept is briefly discussed to account for the slow dynamics during the physical aging process.  相似文献   

7.
The reduction of ferric derivatives of hemeproteins in solution typically requires moderate to strong reducing agents. Reducing sugars are not adequate to reduce ferric myoglobins or hemoglobins under solution conditions favorable to protein stability. We find that embedding aquo-met derivatives of horse myoglobin and human adult hemoglobin in a glucose-doped glassy matrix derived from trehalose facilitates an efficient thermally initiated reduction that yields a five-coordinate high-spin ferrous heme. The trehalose glass plays a central role by stabilizing the reduction-prone bis-histidine heme (hemichrome) intermediate under the high-temperature conditions that favor the open reducing form of glucose. Due to glass-imposed limitations on conformational reorganization, this process has clear applications in biophysics where it can be used to generate nonequilibrium ferrous derivatives having the initial conformation of the aquo-met derivative. Since the glassy matrix can be redissolved to release the embedded protein, this technique is not only a basis for a relatively benign method of reducing hemoglobin-based blood substitutes that have undergone autoxidation during storage but may also be a way to reactivate stored proteins that have undergone oxidation.  相似文献   

8.
The authors report the results of temperature-dependent Brillouin scattering from both transverse and longitudinal acoustic waves, heat capacity studies as well as room temperature Raman scattering studies on M2O-MgO-WO3-P2O5 glasses (M=K,Rb). These results were used to obtain information about structure and various properties of the studied glasses such as fragility, elastic moduli, ratio of photoelastic constants, and elastic anharmonicity. They have found that both glasses have similar properties but replacement of K+ ions by Rb+ ions in the glass network leads to decrease of elastic parameters and P44 photoelastic constant due to increase of fragility. Based on Brillouin spectroscopy they show that a linear correlation between longitudinal and shear elastic moduli holds over a large temperature range. This result supports the literature data that the Cauchy-type relation represents a general rule for amorphous solids. An analysis of the Boson peak revealed that the form of the frequency distribution of the excess density of states is in agreement with the Euclidean random matrix theory. The reason of the observed shift of the maximum frequency of the Boson peak when K+ ions are substituted for Rb+ ions is also briefly discussed.  相似文献   

9.
We perform experiments on two different dense colloidal suspensions with confocal microscopy to probe the relationship between local structure and dynamics near the glass transition. We calculate the Voronoi volume for our particles and show that this quantity is not a universal probe of glassy structure for all colloidal suspensions. We correlate the Voronoi volume to displacement and find that these quantities are only weakly correlated. We observe qualitatively similar results in a simulation of a polymer melt. These results suggest that the Voronoi volume does not predict dynamical behavior in experimental colloidal suspensions; a purely structural approach based on local single particle volume likely cannot describe the colloidal glass transition.  相似文献   

10.
11.
12.
The supercooled plastically crystalline phase (glassy crystal) of cyanoadamantane was investigated by multidimensional 2H NMR (T>Tg). Although the orientationally disordered crystalline phase always coexisted with the orientationally ordered crystalline phase, we were able to single out the signal from the glassy crystal by selective excitation and it was possible to carry out line shape measurements and two-dimensional (2D) experiments (in frequency and time domain). The latter directly reveal sixfold jumps with an reorientation of the molecular C3 axis via 90 degrees angles, thus reflecting the symmetry of the lattice. The motion around the C3 axis is found to be always fast. We can reproduce the line shape by random walk simulations properly taking into account these molecular motions. Both methods (line shape and 2D experiments) yield time constants which agree with those reported by other techniques. Refining the analysis a narrow distribution of correlation times is introduced to account for a weak stretching of the correlation function. We did not find any indication of a small angle process usually found in structural glasses. Thus, the motional process in the glassy crystal appears to be simple and quite different from that in structural glasses.  相似文献   

13.
Spectrally resolved infrared stimulated vibrational echo measurements are used to measure the vibrational dephasing of the CO stretching mode of carbonmonoxy-hemoglobin (HbCO), a myoglobin mutant (H64V), and a bacterial cytochrome c(552) mutant (Ht-M61A) in aqueous solution and trehalose glasses. The vibrational dephasing of the heme-bound CO is significantly slower for all three proteins embedded in trehalose glasses compared to that of aqueous protein solutions. All three proteins exhibit persistent but notably slower spectral diffusion when the protein surface is fixed by the glassy solvent. Frequency-frequency correlation functions (FFCFs) of the CO are extracted from the vibrational echo data to reveal that the structural dynamics, as sensed by the CO, of the three proteins in trehalose and aqueous solution are dominated by fast (tens of femtoseconds), motionally narrowed fluctuations. MD simulations of H64V in dynamic and "static" water are presented as models of the aqueous and glassy environments. FFCFs are calculated from the H64V simulations and qualitatively reproduce the important features of the experimentally extracted FFCFs. The suppression of long time scale (picoseconds to tens of picoseconds) frequency fluctuations (spectral diffusion) in the glassy solvent is the result of a damping of atomic displacements throughout the protein structure and is not limited to structural dynamics that occur only at the protein surface. The analysis provides evidence that some dynamics are coupled to the hydration shell of water, supporting the idea that the bioprotection offered by trehalose is due to its ability to immobilize the protein surface through a thin, constrained layer of water.  相似文献   

14.
We consider a model dense colloidal dispersion at the glass transition, and investigate the connection between equilibrium stress fluctuations, seen in linear shear moduli, and the shear stresses under strong flow conditions far from equilibrium, viz., flow curves for finite shear rates. To this purpose, thermosensitive core-shell particles consisting of a polystyrene core and a cross-linked poly(N-isopropylacrylamide) shell were synthesized. Data over an extended range in shear rates and frequencies are compared to theoretical results from integrations through transients and mode coupling approaches. The connection between nonlinear rheology and glass transition is clarified. While the theoretical models semiquantitatively fit the data taken in fluid states and the predominant elastic response of glass, a yet unaccounted dissipative mechanism is identified in glassy states.  相似文献   

15.
We report the interfacial properties of monolayers of Ag nanoparticles 10-50 nm in diameter formed at the toluene-water interface under steady as well as oscillatory shear. Strain amplitude sweep measurements carried out on the film reveal a shear thickening peak in the loss moduli (G") at large amplitudes followed by a power law decay of the storage (G') and loss moduli with exponents in the ratio 2:1. In the frequency sweep measurements at low frequencies, the storage modulus remains nearly independent of the angular frequency, whereas G" reveals a power law dependence with a negative slope, a behavior reminiscent of soft glassy systems. Under steady shear, a finite yield stress is observed in the limit of shear rate .gamma going to zero. However, for .gamma > 1 s-1, the shear stress increases gradually. In addition, a significant deviation from the Cox-Merz rule confirms that the monolayer of Ag nanoparticles at the toluene-water interface forms a soft two-dimensional colloidal glass.  相似文献   

16.
The stress-strain relations and the yield behavior of a model glass (a 80:20 binary Lennard-Jones mixture) is studied by means of molecular dynamics simulations. In a previous paper it was shown that, at temperatures below the glass transition temperature, Tg, the model exhibits shear banding under imposed shear. It was also suggested that this behavior is closely related to the existence of a (static) yield stress (under applied stress, the system does not flow until the stress sigma exceeds a threshold value sigmay). A thorough analysis of the static yield stress is presented via simulations under imposed stress. Furthermore, using steady shear simulations, the effect of physical aging, shear rate and temperature on the stress-strain relation is investigated. In particular, we find that the stress at the yield point (the "peak"-value of the stress-strain curve) exhibits a logarithmic dependence both on the imposed shear rate and on the "age" of the system in qualitative agreement with experiments on amorphous polymers, and on metallic glasses. In addition to the very observation of the yield stress which is an important feature seen in experiments on complex systems like pastes, dense colloidal suspensions and foams, further links between our model and soft glassy materials are found. An example is the existence of hysteresis loops in the system response to a varying imposed stress. Finally, we measure the static yield stress for our model and study its dependence on temperature. We find that for temperatures far below the mode coupling critical temperature of the model (Tc = 0.435 in Lennard-Jones units), sigmay decreases slowly upon heating followed by a stronger decrease as Tc is approached. We discuss the reliability of results on the static yield stress and give a criterion for its validity in terms of the time scales relevant to the problem.  相似文献   

17.
We have carried out molecular-dynamics simulations on fully flexible all-atom models of the protein lysozyme immersed in trehalose, an effective biopreservative, with the purpose of exploring the nature and extent of the dynamical coupling between them. Our study shows a strong coupling over a wide range of temperatures. We found that the onset of anharmonic behavior was dictated by changes in the dynamics and relaxation processes in the trehalose glass. The physical origin of protein-trehalose coupling was traced to the hydrogen bonds formed at the interface between the protein and the solvent. Moreover, protein-solvent hydrogen bonding was found to control the structural relaxation of the protein. The dynamics of the protein was found to be heterogeneous; the motions of surface and core atoms had different dependencies on temperature and, in addition, the surface atoms were more sensitive to the dynamics of the solvent than the core atoms. From the solvent perspective we found that the dynamics near the protein surface showed an unexpected enhanced mobility compared to the bulk. These results shed some light on the microscopic origins of the dynamical coupling in protein-solvent systems.  相似文献   

18.
We present low-frequency Raman scattering of pure GeO(2) glass under pressure up to 4 GPa, corresponding to an elastic transformation. Intensity variation and frequency shift of the boson peak are analysed and compared to the Debye model. The decrease of the boson peak intensity scaled by the Debye energy is correlated to the elastic anomalous properties under pressure up to 1.5 GPa, and interpreted as an elastic homogenisation process at the local scale. We emphasize similarities between a-GeO(2) and a-SiO(2) behavior under pressure, and compare our results to other experiments, numerical studies, and predictions of several models concerning amorphous systems.  相似文献   

19.
The compatibility of the blend systems for olyactic acid (PLA)/tributyl citrate (TBC) and PLA/glycerol has been studied by molecule and mesoscopic dynamics methods. The results from glass transition temperature simulations showed that the compatibility of PLA/TBC system was better than that of PLA/glycerol, which were consistent with the conclusion obtained from the pair correlation functions. Besides, the behaviors of phase state distribution and evolution process were investigated by mesoscopic dynamics method as well. The results indicated that citrate ester was a better plasticizer than glycerol for PLA.  相似文献   

20.
Spin-polarized echo-detected electron paramagnetic resonance (EPR) spectra and the transversal relaxation rate T2(-1) of the photoexcited triplet state of fullerene C60 molecules were studied in o-terphenyl, 1-methylnaphthalene, and decalin glassy matrices. The model is composed of a fast (correlation time approximately 10(-12) s) pseudorotation of (3)C60 in a local anisotropic potential created by interaction of the fullerene molecule with the surrounding matrix molecules. In simulations, this potential is assumed to be axially symmetric around some axis of a preferable orientation in a matrix cage. The fitted value of the potential was found to depend on the type of glass and to decrease monotonically with a temperature increase. A sharp increase of the T2(-1) temperature dependence was found near 240 K in glassy o-terphenyl and near 100 K in glassy 1-methylnaphthalene and decalin. This increase probably is related to the influence on the pseudorotation of the onset of large-amplitude vibrational molecular motions (dynamical transition in glass) that are known for glasses from neutron scattering and molecular dynamics studies. The obtained results suggest that molecular and spin dynamics of the triplet fullerene are extremely sensitive to molecular motions in glassy materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号