共查询到20条相似文献,搜索用时 15 毫秒
1.
Wenhui Yuan Xiaofang Hu Li Li College of Chemical Engineering Energy South China University of Technology Guangdong Key Laboratory of Green Chemicals Guangzhou China 《天然气化学杂志》2006,15(1):58-62
Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ has been successfully prepared by using citrate-EDTA complexation method at relatively low calcination temperature. The structure and thermal decomposition process of the complex precursor have been investigated by means of differential scanning calorimetry-thermal gravimetric analysis (DSC/TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopic (FT-IR) measurements. The precursor decomposed completely and started to form perovskite-type oxide above 420℃ according to the differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results. Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ obtained has been confirmed from the XRD pattern, and no peak of SrCO3 was found by XR.D of the oxides synthesized at a relatively low temperature of 800 ℃. The reducibility of La0.6Sr0.4Co0.8Fe0.2O3-δ was also characterized by the temperature programmed reduction (TPR) technique. Disk shaped dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was prepared by the isostatical pressing method. The oxygen flux rate of dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was (2.8-18)×10-8 mol/(cm2·s) in the temperature range of 800-1 000℃. 相似文献
2.
F. Tietz I. Arul Raj M. Zahid A. Mai D. Stver 《Progress in Solid State Chemistry》2007,35(2-4):539-543
An overview on the variation of the thermal expansion, the electrical conductivity as well as non-stoichiometry of the oxide content as a function of composition within the quasi-ternary system La0.8Sr0.2MnO3−δ–La0.8Sr0.2CoO3−δ–La0.8Sr0.2FeO3−δ in air is presented. The various powders were synthesized under identical conditions. The DC electrical conductivity values of the compositions at 800 °C in air vary in a wide range from 15 to 1338 S cm−1. The magnitude of electrical conductivity of the perovskites is mainly determined by the percentage of cobalt in the compositions. A similar behaviour was observed for the measured thermal expansion coefficients between room temperature and 1000 °C in air, increasing from 10.9 to 19.4 × 10−6 K−1 as a function of cobalt content. Changes in the oxygen stoichiometry of the materials were characterized by temperature-programmed oxidation measurements. 相似文献
3.
A phase-inversion/sintering technique has been employed in the production of La0.6Sr0.4Co0.2Fe0.8O3−α (LSCF) hollow fibre membranes, a bundle of which has then been placed in a high-temperature furnace for production of high purity oxygen from air at temperatures between 980 °C and 1060 °C. By applying a vacuum in the hollow fibre lumens, a product stream containing oxygen purity of 97.15% has been obtained. The downstream vacuum degree higher than 99 kPa shows negligible effect on the oxygen production rate. Studies on long-term operation suggest that the LSCF hollow fibre membranes are less stable for the oxygen production due to the segregation of the constituent membrane elements and the formation of new phases on the outer membrane surfaces. The effect of the operating cycle on the retrogression of membrane performance is much larger than that of duration used in a single cycle. 相似文献
4.
Jung-Min Kim Gab-Jin Hwang Sang-Ho Lee Chu-Sik Park Jong-Won Kim Young-Ho Kim 《Journal of membrane science》2005,250(1-2):11-16
The oxygen separation membrane having perovskite structure for the partial oxidation of methane to synthesis gas was prepared. La0.7Sr0.3Ga0.6Fe0.4O3−δ (LSGF) perovskite membrane coated with La0.6Sr0.4CoO3−δ (LSC) (M1), and the one side of M1 membrane coated with NiO (M2) was prepared to examine the partial oxidation of methane. The single oxygen permeations of the LSC + LSGF (M1) membrane and NiO coated membrane (M2) were measured. The oxygen permeation flux in M1 membrane was higher than that of M1 membrane at 850 °C.
The partial oxidation experiment of methane using the prepared membranes was examined at 850 °C. The value of CH4 conversion and CO selectivity of M2 membrane was higher than that of M1 membrane.
NiO/NiAl2O4 catalyst was used to improve the methane conversion, and the partial oxidation experiment of methane with M1 membrane was examined at 850 °C. The CH4 conversion was 88%, and CO selectivity was 100%. 相似文献
5.
采用SEM、 XRD、 XPS、恒电流充放电等方法研究了不同量的氧化钛包覆对LiCo0.2Ni0.4Mn0.4O2结构和电化学性能的影响。结果表明,0.3mol%氧化钛包覆能显著改善LiCo0.2Ni0.4Mn0.4O2的循环性能、倍率放电能力及高截止电压(3.0~4.5 V)下的循环性。XPS数据表明氧化钛包覆能明显的抑制样品表面的氧化活性,从而减少了电极材料表面与电解液的反应,改善了LiCo0.2Ni0.4Mn0.4O2的电化学性能。 相似文献
6.
Jianxin Yi Yanbo Zuo Wei Liu Louis Winnubst Chusheng Chen 《Journal of membrane science》2006,280(1-2):849-855
A composite of oxygen ion conducting oxide Ce0.8Sm0.2O2−δ (60 vol.%) and electron conducting oxide La0.8Sr0.2CrO3−δ was prepared by sintering a powder compact at a temperature of 1550 °C. No significant reaction between the two constituent oxides was observed under preparation and oxygen permeation conditions. Appreciable oxygen permeation fluxes through the composite membrane were measured at elevated temperatures with one side of it exposed to the ambient air and the other side to a flowing helium gas stream. The oxygen flux initially increased with time, and took a long time to reach a steady value. A steady oxygen permeation flux as high as 1.4 × 10−7 mol cm−2 s−1 was obtained with a 0.3 mm thick membrane at 950 °C under a relatively small oxygen partial pressure difference of 0.21 bar/0.0092 bar. It was revealed that the overall oxygen permeation process was mainly limited by the transport in the bulk of the membrane in the range of the membrane thickness greater than 1.0 mm, and the limitation by the surface oxygen exchange came into play at reduced thickness of 0.6 mm. 相似文献
7.
Francesco Bozza Riccardo Polini Enrico Traversa 《Electrochemistry communications》2009,11(8):1680-1683
Remarkable power density was obtained for anode-supported solid oxide fuel cells (SOFCs) based on La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) electrolyte films, fabricated following an original procedure that allowed avoiding undesired reactions between LSGM and electrode materials, especially Ni. Electrophoretic deposition (EPD) was used for the fabrication of 30 μm-thick electrolyte films. Anode supports were made of La0.4Ce0.6O2−x (LDC). The LSGM powder was deposited by EPD on an LDC green tape-cast membrane added with carbon powder, both as pore former and substrate conductivity booster. A subsequent co-firing step at 1490 °C produced dense electrolyte films on porous LDC skeletons. Then, a La0.8Sr0.2Fe0.8Co0.2O3−δ (LSFC) cathode was applied by slurry-coating and calcined at 1100 °C. Finally, the porous LDC layer was impregnated with molten Ni nitrate to obtain, after calcination at 900 °C, a composite NiO–LDC anode. Maximum power densities of 780, 450, 275, 175, and 100 mW/cm2 at 700, 650, 600, 550, and 500 °C, respectively, were obtained using H2 as fuel and air as oxidant, demonstrating the success of the processing strategy. As a comparison, electrolyte-supported SOFCs made of the same materials were tested, showing a maximum power density of 150 mW/cm2 at 700 °C, more than 5 times smaller than the anode-supported counterpart. 相似文献
8.
对中温固体氧离子导体———La0.9Sr0.1Ga0.8Mg0.2O2.85材料分别在1300,1350,1400和1450℃4个温度下烧结4 h,之后对其进行XRD,SEM和阻抗谱等测试。实验结果显示:当烧结温度为1400℃时,样品为单一的La0.9Sr0.1Ga0.8Mg0.2O2.85晶体相,晶粒排列较为紧密,致密度达到96.6%,且不同温度下的电导率均最高。然后,选取在该温度下烧结的大小不同的两片陶瓷片制作了一种新型结构的电流型氧传感器。改变测试环境中的氧浓度的大小,在600,650和700℃3个温度下对传感器的气敏特性进行了测试。从测试的结果中发现:传感器极限电流与氧浓度并不呈现传统的线性关系。根据Fick第一定律、法拉第定律和Langmuir吸附方程对这种氧传感器的极限电流与氧浓度的关系进行了理论推导,得到了新的关系表达式,实验结果也验证了理论推导出的结果的合理性。此外,在温度为600℃时,对该传感器的响应时间进行了测试,上升和下降响应时间均为10~15 s。 相似文献
9.
V.A. Cherepanov L.Ya. Gavrilova T.V. Aksenova M.V. Ananyev E. Bucher G. Caraman W. Sitte V.I. Voronin 《Progress in Solid State Chemistry》2007,35(2-4):175-182
The samples of La0.4Sr0.6Co1−yFeyO3−δ (y = 0.2 and 0.4) were prepared using both conventional ceramic technique and nitrate–citrate precursors technique. The phase identification was made by X-ray diffraction method. The refinement of structural parameters from the XRD and neutron diffraction measurements was performed by full profile Rietveld analysis. Neutron diffraction showed that both samples possess distorted perovskite-type structure. Oxygen nonstoichiometry was measured by chemical analysis and thermogravimetry (TG) analysis in the range 20 ≤ T/°C ≤ 900 and 2E-5 ≤ pO2/atm ≤ 4E-1. TG-experiments indicate a relatively fast and reversible oxygen exchange at pO2 > 1E-2 atm. Mass saturation occurs at T < 300 °C upon cooling. The absolute value of oxygen nonstoichiometry was determined by iodometric titration measurements. It was found that both samples have practically stoichiometric composition at 300 °C in air and δ increases with increasing temperature and decreasing oxygen partial pressure. 相似文献
10.
固-溶法制备中温固体氧化物燃料电池高性能La0.8Sr0.2MnO3-Ba0.5Sr0.5Co0.8Fe0.2O3阴极 总被引:1,自引:0,他引:1
研究了新型固溶法合成La0.8Sr0.2MnO3(LSM)包覆Ba0.5Sr0.5Co0.8Fe0.2O3(BSCF)复合粉体(LSM-BSCF),并探讨了其作为中温固体氧化物燃料电池阴极材料的电化学性能。LSM-BSCF阴极结合了LSM和BSCF阴极的优点,不仅增大了三相界面,而且稳定了微观结构。当温度为600-750℃时,其极化阻抗为0.61-0.09 Ω·cm2。与溶液注入法制备的高性能电极相比,极大地提高了性能稳定性。 相似文献
11.
通过低温溶剂热的方法成功制备出了LiCr0.2Ni0.4Mn1.4O4尖晶石正极材料。通过此法,溶液的饱和蒸汽压急剧降低且在室温(25℃)下即可沸腾。所有的金属离子可在随后的热聚合过程中均匀分散且煅烧后所得材料无杂质相生成。采用了热重分析,X射线衍射,扫描电镜、循环伏安,交流阻抗等测试手段对材料进行了表征。结果表明:此法所得材料含有Mn3+,为Fd3m晶型,且其形貌规则、粒度分布均一。1C和10C下放电容量为140.5和121.0mAh·g-1,10C下100次循环容量保持率高达96.9%。其优异的电化学性能可归因于均相的前驱体制备过程,高结晶度且无杂相生成,以及较高的锂离子扩散系数诸因素的共同作用。 相似文献
12.
La0.8Sr0.2Fe1-xScxO3-δ催化剂的制备、表征及甲烷催化燃烧性能 总被引:1,自引:0,他引:1
采用甘氨酸-硝酸盐溶液燃烧法制备了钙钛矿型氧化物催化剂La0.8Sr0.2Fe1-xScxO3-δ (LSFS, x=0, 0.3,0.4, 0.5, 0.6, 0.8, 1), 利用X射线衍射(XRD)、H2程序升温还原(H2-TPR)、扫描电子显微镜(SEM)和比表面积测试等手段对催化剂进行了系统表征, 并在常压微型固定床反应器上考察了催化剂对甲烷燃烧的催化性能. 结果表明, 经空气气氛下900 °C煅烧5 h制备的LSFS均具有单一的钙钛矿结构, 在La0.8Sr0.2FeO3-δ (LSF)中掺杂Sc有助于改善催化剂的抗烧结性能, 提高催化剂的比表面积. 当LSF 中的Sc 掺杂量为0.4-0.6 时, 所形成的LSFS表现出良好的甲烷催化燃烧活性, 其中Sc 掺杂量为0.5 时, 其起燃温度(T10)和完全转化温度(T90)分别为406和563 °C, 与La0.8Sr0.2FeO3-δ和La0.8Sr0.2ScO3-δ相比, T10分别降低了14和87 °C; T90分别降低了59和95 °C. 相似文献
13.
通过低温溶剂热的方法成功制备出了LiCr0.2Ni0.4Mn1.4O4尖晶石正极材料。通过此法,溶液的饱和蒸汽压急剧降低且在室温(25℃)下即可沸腾。所有的金属离子可在随后的热聚合过程中均匀分散且煅烧后所得材料无杂质相生成。采用了热重分析,X射线衍射,扫描电镜、循环伏安,交流阻抗等测试手段对材料进行了表征。结果表明:此法所得材料含有Mn3+,为Fd3m晶型,且其形貌规则、粒度分布均一。1C和10C下放电容量为140.5和121.0 mAh·g-1,10C下100次循环容量保持率高达96.9%。其优异的电化学性能可归因于均相的前驱体制备过程,高结晶度且无杂相生成,以及较高的锂离子扩散系数诸因素的共同作用。 相似文献
14.
A synthetic route for advanced perovskites is elucidated that consists of a combined EDTA/citrate complexing of metal cations and the subsequent drying and firing at moderate temperatures. A fine-scale intermixing of cations is maintained during all the processing steps. The perovskite-type oxide is formed already in an intermediate step at 700 °C by the reaction of an ultra-finely dispersed powder consisting of a mixed barium–strontium carbonate, a zinc–iron spinel, and zinc oxide. The process yields powders of good sinterability and finally dense ceramics composed of stoichiometric perovskite grains of the type (Ba,Sr)(Zn,Fe)O3−δ. 相似文献
15.
Phase equilibria, crystal structure, and transport properties in the (100−x) La0.95Ni0.6Fe0.4O3-xCeO2 (LNFCx) system (x=2-75 mol%) were studied in air. Evolution of phase compositions and crystal structure of components was observed. The LNFCx (2≤x≤10) are three-phase and comprise the perovskite phase with rhombohedral symmetry (R3?c), the modified ceria with fluorite structure (Fm3?m), and NiO as a secondary phase. These multiphase compositions exhibit metallic-like conductivity above 300 °C. Their conductivity gradually decreases from 395.6 to 260.6 S/cm, whereas the activation energy remains the same (Ea=0.04-0.05 eV), implying the decrease in the concentration of charge carriers. Phase compositions in the LNFCx (25≤x≤75) are more complicated. A change from semiconducting to metallic-like conductivity behavior was observed in LNFC25 at about 550 °C. The conductivity of LNFCx (25≤x≤75) could be explained in terms of a modified simple mixture model. 相似文献
16.
采用柠檬酸配位法制备K、Cu掺杂的Lu0.8K0.2Cu0.05Mn0.95O3钙钛矿催化剂,运用程序升温氧化(TPO)考察在不同浓度SO2气氛下La0.8K0.2Cu0.05Mn0.95O3催化剂催化氧化模拟碳黑的性能,并用XRD、FFIR和XPS等进行表征.结果表明,催化剂在0~0.1%的SO2气氛中呈现出不同活性,φSO2≤0.05%的气氛可促进催化剂催化氧化碳黑的活性,当φSO2=0303%,催化剂活性最高;引入φSO2≥0.06%时催化剂活性明显下降.XPS说明表面活性氧的增加是低浓度的SO2促进催化活性的原因,同时XRD、FTIR结果表明高浓度的SO2所产生的大量SO42-是抑制催化剂活性的原因. 相似文献
17.
The partial energies and entropies of O2in perovskite-type oxides La0.6Sr0.4Co1−yFeyO3−δ(y=0, 0.1, 0.25, 0.4, 0.6) were determined as a function of nonstoichiometryδby coulometric titration of oxygen in the temperature range 650–950°C. An absolute reference value ofδwas obtained by thermogravimetry in air. The nonstoichiometry at a given oxygen pressure and temperature decreases with iron contenty. At low nonstoichiometries the oxygen chemical potential decreases withδ. The observed behavior can be interpreted by assuming random distribution of oxygen vacancies, an electronic structure with both localized donor states on Fe, and a partially filled itinerant electron band, of which the density of states at the Fermi level scales with the Co content. The energy of the Fe states is close to the energy at the Fermi level in the conduction band. The observed trends of the thermodynamic quantities can be interpreted in terms of the itinerant electron model only when the iron content is small. At high values ofδthe chemical potential of O2becomes constant, indicating partial decomposition of the perovskite phase. The maximum value ofδat which the compositions are single-phase increases with temperature. 相似文献
18.
采用溶胶-凝胶法制备了La0.7Sr0.3Co0.8Fe0.2O3钙钛矿催化剂,考察了还原剂种类(CO,C3H6,H2)对催化剂在氮氧化物储存还原(NSR)循环前后的氮氧化物储存量(NSC)和NO-to-NO2转化率的影响.O2程序升温脱附(O2-TPD)实验结果表明,CO还原后的钙钛矿催化剂上形成了较多的氧空位,而氧空位则是一种有效的NOx储存活性中心.活性测试和傅里叶红外变换(FTIR)光谱表征结果显示:在NSR循环中,以CO为还原剂时催化剂显示了最佳的氮氧化物(NOx)储存效果.进一步的研究结果显示,当采用CO作为还原剂时,经过三次NSR循环后,催化剂中出现了Sr3Fe2O7新物相,而该物相可能具有比La0.7Sr0.3Co0.8Fe0.2O3钙钛矿更佳的NOx储存性能.综上所述,CO作为还原剂时可能使钙钛矿催化剂产生更多的氧空位以及更易于储存NOx的Sr3Fe2O7物相,这些原因使其NOx储存性能得到了大幅度改善. 相似文献
19.
20.
采用甘氨酸-硝酸盐法合成了中温固体氧化物燃料电池阴极材料La1.6Sr0.4Ni1-xCuxO4 (x=0.2, 0.4, 0.6,0.8), 利用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结构和微观形貌进行了表征. 结果表明, 该阴极材料与固体电解质Ce0.9Gd0.1O1.95(CGO)在1000 °C烧结时不发生化学反应, 且烧结4 h 后, 二者之间可形成良好的接触界面. 利用电化学交流阻抗谱技术对阴极材料的电化学性能进行研究, 结果显示, 当Cu离子掺杂量(x)为0.6 时, La1.6Sr0.4Ni0.4Cu0.6O4阴极具有最小的极化电阻, 在空气中当测试温度为750 °C时, 极化电阻为0.35 Ω·cm2. 在不同氧分压条件下电化学阻抗谱分析结果表明, 电极上的两个氧还原反应主要包含氧离子从三相界面向电解质CGO 转移的过程和电荷的迁移过程, 其中电荷的迁移过程为电极反应的速率控制步骤.La1.6Sr0.4Ni0.4Cu0.6O4电极在空气中700 °C和阴极电流密度为45 mA·cm-2时, 阴极过电位为45 mV. 本研究的初步结果表明La1.6Sr0.4Ni1-xCuxO4材料是一种电化学性能较为优良的新型中温固体氧化物燃料电池(IT-SOFC)阴极材料. 相似文献