首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Deoxyribonolactone (L) is an oxidized abasic lesion that is produced by a variety of DNA damaging agents. It exhibits unique biological effects with respect to its proclivity to form DNA-protein cross-links and promutagenic base pairs. Recent evidence suggests that the levels of this lesion caused by oxidative stress are underestimated. We have developed a simple, selective method for detecting subpicomole amounts of L in DNA. The method takes advantage of the selective reaction of the butenolide (2) derived from beta-elimination from L with a biotinylated derivative of cysteine. This method will be useful for analyzing the levels of this oxidized abasic site in DNA.  相似文献   

2.
3.
An abasic site-containing DNA combined with lumiflavin allows amperometric determination of single nucleotide polymorphism through hydrogen bond-mediated nucleobase recognition in water by using abasic sites as a molecular recognition field.  相似文献   

4.
Time-dependent Stokes shift (TDSS) responses in proteins and DNA exhibit a broad range of long time scales (>10 ps) that are not present in bulk aqueous solution. The physical interpretation of the long TDSS time scales in biomolecular systems is a matter of considerable debate because of the many different components present in the sample (water, biomolecule, counterions), which have highly correlated motions and intrinsically different abilities to adapt to local perturbations. Here we use molecular dynamics (MD) simulations to show that the surprisingly slow (~10 ns) TDSS response of coumarin 102 (C102), a base pair replacement, reflects a distinct dynamical signature for DNA damage. When the C102 molecule is covalently incorporated into DNA, an abasic site is created on the strand opposite the C102 probe. The abasic sugar exhibits a reversible interchange between intra- and extrahelical conformations that are kinetically stable on a nanosecond time scale. This conformational change, only possible in damaged DNA, was found to be responsible for the long time scales in the measured TDSS response. For the first time, a TDSS measurement has been attributed to a specific biomolecular motion. This finding directly contradicts the prevailing notion that the TDSS response in biomolecular contexts is dominated by hydration dynamics. It also suggests that TDSS experiments can be used to study ultrafast biomolecular dynamics that are inaccessible to other techniques.  相似文献   

5.
6.
We use molecular modeling calculations to study the structure and the flexibility of abasic (AP sites) and for the design of anticancer drugs targeted against AP sites. For either adenine or cytosine on the opposing strand within the same sequence context, the results are in line with experimental data which show that the two unpaired bases lead to intrahelical forms, but with differences in induced curvature. Results on flexibility, indicate that the two duplexes have the same bending rigidity for cytosine. In previous work a series of polyfunctional molecules, such as ATAc, were designed to selectively recognize and cleave abasic sites in DNA. The nitrobenzamide group which was added to the ATAc molecule to obtain a new molecule, termed ATAc4, can induce a second lesion under irradiation in close proximity to the abasic site. The different conformations of ATAc4 interacting with a DNA oligomer containing a stable analog of the abasic site were compared to the photoinduced cleavage pattern observed experimentally. Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 12 May 2000  相似文献   

7.
[structure: see text] The synthesis of a chemiluminescent acridinium hydroxylamine (AHA) for the direct detection of abasic sites in damaged nucleic acids is described. The reagent reacts readily with abasic sites of damaged calf thymus DNA generated in a time-dependent manner under acid/heat depurination conditions. Preliminary results indicate the sensitivity of the direct chemiluminescent detection format is approximately 0.1 abasic sites detected per 10(6) nucleotides using as little as 200 ng of DNA.  相似文献   

8.
9.
The ability of DNA polymerases to maintain the integrity of the genome even after it has been structurally altered is vital. There is considerable interest in determining the structural properties of the DNA template that polymerases recognize when determining which nucleotide to add to a nascent strand. Mechanistic, synthetic, and structural chemistries have been used to study how DNA polymerase activity is affected by size, shape, pi-stacking, and hydrogen bonds of the template molecules. Herein, we probe the structural aspects of abasic lesions that result in their distinct coding potential in Escherichia coli despite lacking a Watson-Crick base. In particular, we investigate why bypass of 2-deoxyribonolactone (L) results in significant amounts of dG incorporation opposite the lesion, whereas other abasic lesions (e.g., AP) adhere to the "A-rule". Experiments using synthetic analogues reveal that DNA polymerase V bypasses L and increased levels of dG incorporation result from a hydrogen bonding interaction between the carbonyl oxygen and dG. These results show that a DNA polymerase utilizes hydrogen bonding as one structural parameter when decoding an abasic lesion.  相似文献   

10.
The site-specific recognition of abasic sites and single base bulges in duplex DNA by sterically expansive rhodium metalloinsertors has been investigated. Through DNA photocleavage experiments, Rh(bpy)2(chrysi)3+ is shown to bind both abasic sites and single base bulges site-specifically and, upon irradiation, to cleave the backbone of the defect-containing DNA. Photocleavage titrations reveal that the metal complex binds DNA containing an abasic site with high affinity (2.6(5) x 106 M-1), comparably to the metalloinsertor and a CC mismatch. The complex binds single base bulge sites with lower affinity (approximately 105 M-1). Analysis of cleavage products and the correlation of affinities with helix destabilization suggest that Rh(bpy)2(chrysi)3+ binds both lesions via metalloinsertion, as observed for Rh binding at mismatched sites, a binding mode in which the mismatched or unpaired bases are extruded from the helix and replaced in the base stack by the sterically expansive ligand of the metalloinsertor.  相似文献   

11.
12.
Nucleobase recognition in water is successfully achieved by the use of an abasic site (AP site) as the molecular recognition field. We intentionally construct the AP site in DNA duplex so as to orient the AP site toward a target nucleobase and examine the complexation of 2-amino-7-methylnaphthyridine (AMND) with nucleobases at the AP site. AMND is found to selectively bind to cytosine (C) base with a 1:1 binding constant of >106 M-1, accompanied by remarkable quenching of its fluorescence. In addition to hydrogen bonding, a stacking interaction with nucleobases flanking the AP site seems responsible for the binding properties of AMND at the AP site. Possible use of AMND is also presented for selective and visible detection of a single-base alternation related to the cytosine base.  相似文献   

13.
Base-modified fluorescent ribonucleoside-analogue probes are valuable tools in monitoring RNA structure and function because they closely resemble the structure of natural nucleobases. Especially, 2-aminopurine, a highly environment-sensitive adenosine analogue, is the most extensively utilized fluorescent nucleoside analogue. However, only a few isosteric pyrimidine ribonucleoside analogues that are suitable for probing the structure and recognition properties of RNA molecules are available. Herein, we describe the synthesis and photophysical characterization of a small series of base-modified pyrimidine ribonucleoside analogues derived from tagging indole, N-methylindole, and benzofuran onto the 5-position of uracil. One of the analogues, based on a 5-(benzofuran-2-yl)pyrimidine core, shows emission in the visible region with a reasonable quantum yield and, importantly, displays excellent solvatochromism. The corresponding triphosphate substrate is effectively incorporated into oligoribonucleotides by T7 RNA polymerase to produce fluorescent oligoribonucleotide constructs. Steady-state and time-resolved spectroscopic studies with fluorescent oligoribonucleotide constructs demonstrate that the fluorescent ribonucleoside photophysically responds to subtle changes in its environment brought about by the interaction of the chromophore with neighboring bases. In particular, the emissive ribonucleoside, if incorporated into an oligoribonucleotide, positively reports the presence of a DNA abasic site with an appreciable enhancement in fluorescence intensity. The straightforward synthesis, amicability to enzymatic incorporation, and sensitivity to changes in the microenvironment highlight the potential of the benzofuran-conjugated pyrimidine ribonucleoside as an efficient fluorescent probe to investigate nucleic acid structure, dynamics, and recognition events.  相似文献   

14.
15.
Combining DNA and superparamagnetic beads in a rotating magnetic field produces multiparticle aggregates that are visually striking, enabling label-free optical detection and quantification of DNA at levels in the picogram per microliter range. DNA in biological samples can be quantified directly by simple analysis of optical images of microfluidic wells placed on a magnetic stirrer without prior DNA purification. Aggregation results from DNA/bead interactions driven either by the presence of a chaotrope (a nonspecific trigger for aggregation) or by hybridization with oligonucleotides on functionalized beads (sequence-specific). This paper demonstrates quantification of DNA with sensitivity comparable to that of the best currently available fluorometric assays. The robustness and sensitivity of the method enable a wide range of applications, illustrated here by counting eukaryotic cells. Using widely available and inexpensive benchtop hardware, the approach provides a highly accessible low-tech microscale alternative to more expensive DNA detection and cell counting techniques.  相似文献   

16.
The bronchosecretolytic drug ambroxol can be reliably quantified in human plasma by high performance liquid chromatography. Plasma is buffered alkaline, extracted with ether, and the organic solvent back-extracted with diluted acid. An automatically sampled aliquot is separated by reversed phase HPLC; the analyte is well separated from two metabolites that interfered strongly in earlier methods. UV detection at 230 nm enables a lower limit of quantitation of 5 ng/ml. Internal standardization with propranolol allows accurate and precise quantification. Evaluation of the optimized combination of mobile and stationary phase is described, and application of the method to experimental and clinical pharmacokinetic studies is illustrated.  相似文献   

17.
A family of simple pyrimidine analogues has been synthesized, and their photophysical properties have been investigated. The most responsive of the family was incorporated in DNA. This isosteric fluorescent DNA analogue monitors denaturation of a DNA duplex via fluorescence and positively detects the presence of abasic sites in DNA duplexes.  相似文献   

18.

The rapid and simultaneous detection of DNA and protein biomarkers is necessary to detect the outbreak of a disease or to monitor a disease. For example, cardiovascular diseases are a major cause of adult mortality worldwide. We have developed a rapidly adaptable platform to assess biomarkers using a microfluidic technology. Our model mimics autoantibodies against three proteins, C-reactive protein (CRP), brain natriuretic peptide (BNP), and low-density lipoprotein (LDL). Cell-free mitochondrial DNA (cfmDNA) and DNA controls are detected via fluorescence probes. The biomarkers are covalently bound on the surface of size- (11–15 μm) and dual-color encoded microbeads and immobilized as planar layer in a microfluidic chip flow cell. Binding events of target molecules were analyzed by fluorescence measurements with a fully automatized fluorescence microscope (end-point and real-time) developed in house. The model system was optimized for buffers and immobilization strategies of the microbeads to enable the simultaneous detection of protein and DNA biomarkers. All prime target molecules (anti-CRP, anti-BNP, anti-LDL, cfmDNA) and the controls were successfully detected both in independent reactions and simultaneously. In addition, the biomarkers could also be detected in spiked human serum in a similar way as in the optimized buffer system. The detection limit specified by the manufacturer is reduced by at least a factor of five for each biomarker as a result of the antibody detection and kinetic experiments indicate that nearly 50 % of the fluorescence intensity is achieved within 7 min. For rapid data inspection, we have developed the open source software digilogger, which can be applied for data evaluation and visualization.

Graphical abstract

  相似文献   

19.
A pair of apurinic/apyrimidinic sites formed in DNA has been covalently connected with bis(aminooxy) derivatives. The efficacy of the interstrand cross-link is associated with the structural tethering of two aminooxy groups. The interstrand cross-link constructed stable DNA scaffolds for enzyme alignment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号