首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulk antisymmetric tensor fields of different ranks have been studied in the context of a generalized Randall–Sundrum model with a non-vanishing induced cosmological constant on the visible brane. It is shown that instead of the usual exponential suppression of the couplings of the zero modes of these bulk fields with the brane fermions in the original Randall–Sundrum model, here the couplings are proportional to the brane cosmological constant. Thus in an era of large cosmological constant these fields have significant role in physical phenomena because of their enhanced couplings with the visible brane fermions.  相似文献   

2.
The radion is expected to be the first signal of the Randall–Sundrum (RS) model. We explore the possibility of finding it in the ongoing Higgs searches at the LHC. The little RS model (LRS), which has a fundamental scale at ∼103103 TeV, is excluded over wide ranges of the radion mass from the latest WW and γγ data by ATLAS and CMS.  相似文献   

3.
The gravity coupling of the symmetric space sigma model is studied in the solvable Lie algebra parametrization. The corresponding Einstein equations are derived and the energy-momentum tensor is calculated. The results are used to derive the dynamical equations of the warped five-dimensional (5D) geometry for localized bulk scalar interactions in the framework of thick brane world models. The Einstein and scalar field equations are derived for flat brane geometry in the context of minimal and non-minimal gravity-bulk scalar couplings.  相似文献   

4.
5.
Five-dimensional spacetimes of two orbifold 3-branes are studied, by assuming that the two 3-branes are spatially homogeneous, isotropic, and independent of time  , following the so-called “bulk-based” approach. The most general form of the metric is obtained, and the corresponding field equations are divided into three groups, one is valid on each of the two 3-branes, and the third is valid in the bulk. The Einstein tensor on the 3-branes is expressed in terms of the discontinuities of the first-order derivatives of the metric coefficients. Thus, once the metric is known in the bulk, the distribution of the Einstein tensor on the two 3-branes is uniquely determined. As applications, we consider two different cases, one is in which the bulk is locally AdS5AdS5, and the other is where it is vacuum. In some cases, it is shown that the universe is first decelerating and then accelerating. The global structure of the bulk as well as the 3-branes is also studied, and found that in some cases the solutions may represent the collision of two orbifold 3-branes. The applications of the formulas to the studies of the cyclic universe and the cosmological constant problem are also pointed out.  相似文献   

6.
We focus on the behaviours of small field of an arctangent potential form, in Randall–Sundrum II braneworld. Within this framework, there is only one brane with positive tension while the second membrane is sent to infinity, and the configuration the model allows to localize the gravity on the curvature of the bulk. In that context, we found that inflationary observables (n s, r, and dn s/dlnk) depend only on the e-folding number N. From the power perturbation value P R (k) given by the latest observational measurements, we evaluate the values of brane tension λ and the energy scale V 0, and we have shown that the various inflationary perturbation parameters are widely consistent with the recent Planck data for a suitable choice of value of the number N. Concerning the reheating phase, we found a large value of the temperature T re ~ 5 × 1014 GeV.  相似文献   

7.
8.
We discuss the cosmological evolution of a brane in the D(>6)D(>6)-dimensional black brane spacetime in the context of the Kaluza–Klein (KK) braneworld scheme, i.e., to consider KK compactification on the brane. The bulk spacetime is composed of two copies of a patch of D  -dimensional black three-brane solution. The near-horizon geometry is given by AdS5×S(D−5)AdS5×S(D5) while in the asymptotic infinity the spacetime approaches D-dimensional Minkowski. We consider the brane motion from the near-horizon region toward the spatial infinity, which induces cosmology on the brane. As is expected, in the early times, namely when the brane is located in the near-horizon region, the effective cosmology on the brane coincides with that in the second Randall–Sundrum (RS II) model. Then, the brane cosmology starts to deviate from the RS type one since the dynamics of KK compactified dimensions becomes significant. We find that the brane Universe cannot reach the asymptotic infinity, irrespectively of the components of matter on the brane.  相似文献   

9.
The algebraic study of the Bel–Robinson tensor proposed and initiated in a previous work (Ferrando and Sáez in Gen Relativ Gravit 41:1695–1715, 2009) is achieved. The canonical form of the different algebraic types is obtained in terms of Bel–Robinson eigen-tensors. An algorithmic determination of the Weyl tensor from the Bel–Robinson tensor is presented.  相似文献   

10.
We present new solutions of warped compactifications in the higher-dimensional gravity coupled to the scalar and the form field strengths. These solutions are constructed in the D-dimensional spacetime with matter fields, with the internal space that has a finite volume. Our solutions give explicit examples where the cosmological constant or 0-form field strength leads to a de Sitter spacetime in arbitrary dimensions.  相似文献   

11.
12.
13.
14.
We consistently incorporate Yang–Mills matter fields into string corrected (deformed) D=10D=10, N=1N=1 supergravity. We solve the Bianchi identities within the framework of the modified beta function favored constraints to second order in the string slope parameter γ also including the Yang–Mills fields. In the torsion, curvature and H   sectors we find that a consistent solution is readily obtained with a Yang–Mills modified supercurrent AabcAabc. We find a solution in the F sector following our previously developed method.  相似文献   

15.
Markus Lazar 《哲学杂志》2013,93(7):749-776
The topic of this paper is the fundamental theory of the non-uniform motion of dislocations in two and three space dimensions. We investigate the non-uniform motion of an arbitrary distribution of dislocations, a dislocation loop and straight dislocations in infinite media using the theory of incompatible elastodynamics. The equations of motion are derived for non-uniformly moving dislocations. The retarded elastic fields produced by a distribution of dislocations and the retarded dislocation tensor potentials are determined. New fundamental key formulae for the dynamics of dislocations are derived (Jefimenko type and Heaviside–Feynman type equations of dislocations). In addition, exact closed-form solutions of the elastic fields produced by a dislocation loop are calculated as retarded line integral expressions for subsonic motion. The fields of the elastic velocity and elastic distortion surrounding the arbitrarily moving dislocation loop are given explicitly in terms of the so-called three-dimensional elastodynamic Liénard–Wiechert tensor potentials. The two-dimensional elastodynamic Liénard–Wiechert tensor potentials and the near-field approximation of the elastic fields for straight dislocations are calculated. The singularities of the near-fields of accelerating screw and edge dislocations are determined.  相似文献   

16.
In the present paper, we study Casimir effect for a conformally coupled scalar field propagating on background of \(4+1\)-dimensional de Sitter (dS) space-time. The field is supposed to obey Dirichlet boundary condition on two 4-dimensional curved boundaries. Technically, we accomplish our calculations using an indefinite field quantization scheme, which already has been successfully applied to the dS minimally coupled massless scalar field and the dS linear gravity to obtain a causal and fully covariant quantum field on dS space-time.  相似文献   

17.
The nucleon form factors of the energy–momentum tensor are studied in nuclear medium in the framework of the in-medium modified Skyrme model. We obtain a negative D  -term, in agreement with results from other approaches, and find that medium effects make the value of d1d1 more negative.  相似文献   

18.
Using scalar–vector–tensor Brans Dicke (VBD) gravity (Ghaffarnejad in Gen Relativ Gravit 40:2229, 2008; Gen Relativ Gravit 41:2941, 2009) in presence of self interaction BD potential \(V(\phi )\) and perfect fluid matter field action we solve corresponding field equations via dynamical system approach for flat Friedmann Robertson Walker metric (FRW). We obtained three type critical points for \(\Lambda CDM\) vacuum de Sitter era where stability of our solutions are depended to choose particular values of BD parameter \(\omega \). One of these fixed points is supported by a constant potential which is stable for \(\omega <0\) and behaves as saddle (quasi stable) for \(\omega \ge 0\). Two other ones are supported by a linear potential \(V(\phi )\sim \phi \) which one of them is stable for \(\omega =0.27647\). For a fixed value of \(\omega \) there is at least 2 out of 3 critical points reaching to a unique critical point. Namely for \(\omega =-0.16856(-0.56038)\) the second (third) critical point become unique with the first critical point. In dust and radiation eras we obtained one critical point which never become unique fixed point. In the latter case coordinates of fixed points are also depended to \(\omega \). To determine stability of our solutions we calculate eigenvalues of Jacobi matrix of 4D phase space dynamical field equations for de Sitter, dust and radiation eras. We should point also potentials which support dust and radiation eras must be similar to \(V(\phi )\sim \phi ^{-\frac{1}{2}}\) and \(V(\phi )\sim \phi ^{-1}\) respectively. In short our study predicts that radiation and dust eras of our VBD–FRW cosmology transmit to stable de Sitter state via non-constant potential (effective variable cosmological parameter) by choosing \(\omega =0.27647\).  相似文献   

19.
20.
We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schrödinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with $m^2\ge 0$ , in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza–Klein (KK) excitations and to analytically compute the corrections to Newton’s law in the thin brane limit. In the first case we consider a novel solution with a mass gap in the spectrum of KK fluctuations with two bound states—the massless 4D graviton free of tachyonic instabilities and a massive KK excitation—as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the thin Randall–Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved with positive branes as in the Lykken–Randall (LR) model and the model is completely free of naked singularities. We also show that the scalar–tensor system is stable under scalar perturbations with no scalar modes localized on the braneworld configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号