首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyze the radiative pion decay π+→e+νeγπ+e+νeγ within nonlocal chiral quark models that include wave function renormalization. In this framework we calculate the vector and axial-vector form factors FVFV and FAFA at q2=0q2=0 — where q2q2 is the e+νee+νe squared invariant mass — and the slope a   of FV(q2)FV(q2) at q2→0q20. The calculations are carried out considering different nonlocal form factors, in particular those taken from lattice QCD evaluations, showing a reasonable agreement with the corresponding experimental data. The comparison of our results with those obtained in the (local) NJL model and the relation of FVFV and a   with the form factor in π0→γ?γπ0γ?γ decays are discussed.  相似文献   

2.
In addition to the narrow spin-one resonances ρTρT, ωTωT and aTaT occurring in low-scale technicolor, there will be relatively narrow scalars in the mass range 200 to 600–700 GeV. We study the lightest isoscalar state, σTσT. In several important respects it is like a heavy Higgs boson with a small vev. It may be discoverable with high luminosity at the LHC where it is produced via weak boson fusion and likely has substantial W+WW+W and Z0Z0Z0Z0 decay modes.  相似文献   

3.
We discuss space-time symmetric Hamiltonian operators of the form H=H0+igHH=H0+igH, where H0H0 is Hermitian and gg real. H0H0 is invariant under the unitary operations of a point group GG while HH is invariant under transformation by elements of a subgroup GG of GG. If GG exhibits irreducible representations of dimension greater than unity, then it is possible that HH has complex eigenvalues for sufficiently small nonzero values of gg. In the particular case that HH is parity-time symmetric then it appears to exhibit real eigenvalues for all 0<g<gc0<g<gc, where gcgc is the exceptional point closest to the origin. Point-group symmetry and perturbation theory enable one to predict whether HH may exhibit real or complex eigenvalues for g>0g>0. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries.  相似文献   

4.
We consider a Schrödinger-type differential expression HV=∇∇+VHV=+V, where ∇ is a Hermitian connection on a Hermitian vector bundle EE over a complete Riemannian manifold (M,g)(M,g) with metric gg and positive smooth measure dμdμ, and VV is a locally integrable section of the bundle of endomorphisms of EE. We give a sufficient condition for mm-accretivity of a realization of HVHV in L2(E)L2(E).  相似文献   

5.
More than four decades ago, March and Murray gave a perturbation theory of the single-particle(s) Dirac density matrix γs(r,r)γs(r,r) to all orders in a given one-body potential energy V(r)V(r). However, for density functional theory in orbital-free form, one requires the functional γs[ρ]γs[ρ] where ρ(r)ρ(r) is the ground-state electron density. Therefore, in the present study, a first-order non-linear differential equation is proposed for γsγs in terms of ρ(r)ρ(r) and ∇ρ(r)ρ(r), plus the single-particle kinetic energy. Since this latter quantity is itself known to be a functional of ρ  , the existence of such an equation for γsγs would be a significant step along the road to determining the desired functional γs[ρ]γs[ρ]. As yet, we have succeeded in giving a rigorous proof of the proposed differential equation for γs(r,r)γs(r,r) only for one- and two-level molecules. If it is subsequently proved for an arbitrary number of levels, which we believe should be possible, it would then allow γsγs to be calculated for molecules of biological interest, from experimentally measured ground-state densities ρ(r)ρ(r), as the approach is entirely orbital-free.  相似文献   

6.
We discuss three Hamiltonians, each with a central-field part H0H0 and a PT-symmetric perturbation igzigz. When H0H0 is the isotropic Harmonic oscillator the spectrum is real for all gg because HH is isospectral to H0+g2/2H0+g2/2. When H0H0 is the Hydrogen atom then infinitely many eigenvalues are complex for all gg. If the potential in H0H0 is linear in the radial variable rr then the spectrum of HH exhibits real eigenvalues for 0<g<gc0<g<gc and a PT phase transition at gcgc.  相似文献   

7.
We construct a natural L2L2-metric on the perturbed Seiberg–Witten moduli spaces Mμ+Mμ+ of a compact 4-manifold MM, and we study the resulting Riemannian geometry of Mμ+Mμ+. We derive a formula which expresses the sectional curvature of Mμ+Mμ+ in terms of the Green operators of the deformation complex of the Seiberg–Witten equations. In case MM is simply connected, we construct a Riemannian metric on the Seiberg–Witten principal U(1)U(1) bundle P→Mμ+PMμ+ such that the bundle projection becomes a Riemannian submersion. On a Kähler surface MM, the L2L2-metric on Mμ+Mμ+ coincides with the natural Kähler metric on moduli spaces of vortices.  相似文献   

8.
In [L. Lebtahi, Lie algebra on the transverse bundle of a decreasing family of foliations, J. Geom. Phys. 60 (2010), 122–133], we defined the transverse bundle VkVk to a decreasing family of kk foliations FiFi on a manifold MM. We have shown that there exists a (1,1)(1,1) tensor JJ of VkVk such that Jk≠0Jk0, Jk+1=0Jk+1=0 and we defined by LJ(Vk)LJ(Vk) the Lie Algebra of vector fields XX on VkVk such that, for each vector field YY on VkVk, [X,JY]=J[X,Y][X,JY]=J[X,Y].  相似文献   

9.
We show that the newly measured branching ratios of vector charmonia (J/ψJ/ψ, ψψ and ψ(3770)ψ(3770)) into γP, where P   stands for light pseudoscalar mesons π0π0, η  , and ηη, can be well understood in the framework of vector meson dominance (VMD) in association with the ηc–η(η)ηcη(η) mixings due to the axial gluonic anomaly. These two mechanisms behave differently in J/ψJ/ψ and ψ→γPψγP. A coherent understanding of the branching ratio patterns observed in J/ψ(ψ)→γPJ/ψ(ψ)γP can be achieved by self-consistently including those transition mechanisms at hadronic level. The branching ratios for ψ(3770)→γPψ(3770)γP are predicted to be rather small.  相似文献   

10.
To complement existing knowledge of the density matrix γF(x,y)γF(x,y) of independent fermions for N   particles in one dimension under harmonic confinement, the corresponding matrix γIB(x,y)γIB(x,y) for impenetrable bosons is given for N=2N=2 and 3 (with the N=4N=4 form available also). For fermions the momentum density is then obtained and illustrated numerically for N=10N=10. The boson momentum density is studied analytically at high momentum p  , the coefficients of the p−4p−4 and p−6p−6 terms being tabulated for N=2–5N=25 inclusive. Their dependence on powers of N   is exhibited numerically. Finally, the functional relationship between γIB(x,y)γIB(x,y) and γF(x,y)γF(x,y) is formally set out and illustrated.  相似文献   

11.
A family of spherically symmetric solutions with horizon in the model with m  -component anisotropic fluid is presented. The metrics are defined on a manifold that contains a product of n−1n1 Ricci-flat “internal” spaces. The equation of state for any s  -th component is defined by a vector UsUs belonging to Rn+1Rn+1. The solutions are governed by moduli functions HsHs obeying non-linear differential equations with certain boundary conditions imposed. A simulation of black brane solutions in the model with antisymmetric forms is considered. An example of solution imitating M2–M5M2M5 configuration (in D=11D=11 supergravity) corresponding to Lie algebra A2A2 is presented.  相似文献   

12.
We consider a Schrödinger differential expression L=ΔA+qL=ΔA+q on a complete Riemannian manifold (M,g)(M,g) with metric gg, where ΔAΔA is the magnetic Laplacian on MM and q≥0q0 is a locally square integrable function on MM. In the terminology of W.N. Everitt and M. Giertz, the differential expression LL is said to be separated in L2(M)L2(M) if for all u∈L2(M)uL2(M) such that Lu∈L2(M)LuL2(M), we have qu∈L2(M)quL2(M). We give sufficient conditions for LL to be separated in L2(M)L2(M).  相似文献   

13.
We study the oil displacement and production behavior in an isothermal thin layered reservoir model subjected to water flooding. We use the CMG’s (Computer Modelling Group  ) numerical simulators to solve mass balance equations. The influences of the viscosity ratio (m≡μoil/μwatermμoil/μwater) and the inter-well (injector-producer) distance rr on the oil production rate C(t)C(t) and the breakthrough time tbrtbr are investigated. Two types of reservoir configuration are used, namely one with random porosities and another with a percolation cluster structure. We observe that the breakthrough time follows a power-law of mm and rr, tbr∝rαmβtbrrαmβ, with α=1.8α=1.8 and β=−0.25β=0.25 for the random porosity type, and α=1.0α=1.0 and β=−0.2β=0.2 for the percolation cluster type. Moreover, our results indicate that the oil production rate is a power law of time. In the percolation cluster type of reservoir, we observe that P(t)∝tγP(t)tγ, with γ=−1.81γ=1.81, where P(t)P(t) is the time derivative of C(t)C(t). The curves related to different values of mm and rr may be collapsed suggesting a universal behavior for the oil production rate.  相似文献   

14.
Suppose that the sphere SnSn has initially a homogeneous distribution of mass and let GG be the Lie group of orientation preserving projective diffeomorphisms of SnSn. A projective motion of the sphere, that is, a smooth curve in GG, is called force free if it is a critical point of the kinetic energy functional. We find explicit examples of force free projective motions of SnSn and, more generally, examples of subgroups HH of GG such that a force free motion initially tangent to HH remains in HH for all time (in contrast with the previously studied case for conformal motions, this property does not hold for H=SOn+1H=SOn+1). The main tool is a Riemannian metric on GG, which turns out to be not complete (in particular not invariant, as happens with non-rigid motions), given by the kinetic energy.  相似文献   

15.
16.
The Higgs sector is extended in R  -symmetric supersymmetry theories by two iso-doublets Rd,uRd,u which complement the standard iso-doublets Hd,uHd,u. We have analyzed masses and interactions of these novel states and describe their [non-standard] decay modes and their production channels at the LHC and e+ee+e colliders.  相似文献   

17.
Heavy quark effective theory predicts that produced charm quarks have the same probability to fragment into any of the four D mesons with orbital angular momentum L=0L=0: the singlet D state and the triplet DD states. This would imply PV(D,D)=3/4PV(D,D)=3/4, where PVPV is the ratio between directly produced L=0L=0 vector states (DD) and all L=0L=0 (D and DD) states. Experimental data collected in several different collision systems (e+ee+e, hadro-production, photo-production, etc.) and over a broad range of collision energies, show that PV(D,D)=0.594±0.010PV(D,D)=0.594±0.010. From this observation, it follows that “naive spin counting” does not apply to charm production, implying a revision of charm production calculations where this assumption is made.  相似文献   

18.
We employ chaotic (?2?2 and ?4?4) inflation to illustrate the important role radiative corrections can play during the inflationary phase. Yukawa interactions of ?  , in particular, lead to corrections of the form −κ?4ln(?/μ)κ?4ln(?/μ), where κ>0κ>0 and μ   is a renormalization scale. For instance, ?4?4 chaotic inflation with radiative corrections looks compatible with the most recent WMAP (5 year) analysis, in sharp contrast to the tree level case. We obtain the 95% confidence limits 2.4×10−14?κ?5.7×10−142.4×10−14?κ?5.7×10−14, 0.931?ns?0.9580.931?ns?0.958 and 0.038?r?0.2050.038?r?0.205, where nsns and r   respectively denote the scalar spectral index and scalar to tensor ratio. The limits for ?2?2 inflation are κ?7.7×10−15κ?7.7×10−15, 0.929?ns?0.9660.929?ns?0.966 and 0.023?r?0.1350.023?r?0.135. The next round of precision experiments should provide a more stringent test of realistic chaotic ?2?2 and ?4?4 inflation.  相似文献   

19.
20.
We introduce a new class of growth models, with a surface restructuring mechanism in which impinging particles may dislodge suspended particles, previously aggregated on the same column in the deposit. The flux of these particles is controlled through a probability pp. These systems present a crossover, for small values of pp, from random to correlated (KPZ) growth of surface roughness, which is studied through scaling arguments and Monte Carlo simulations on one- and two-dimensional substrates. We show that the crossover characteristic time t×t× scales with pp according to t×∼p−yt×py with y=(n+1)y=(n+1) and that the interface width at saturation WsatWsat scales as Wsat∼p−δWsatpδ with δ=(n+1)/2δ=(n+1)/2, where nn is either the maximal number of broken bonds or of dislodged suspended particles. This result shows that the sets of exponents y=1y=1 and δ=1/2δ=1/2 or y=2y=2 and δ=1δ=1 found in all previous works focusing on systems with this same type of crossover are not universal. Using scaling arguments, we show that the bulk porosity PP of the deposits scales as P∼py−δPpyδ for small values of pp. This general scaling relation is confirmed by our numerical simulations and explains previous results present in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号