首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This Letter considers the generalized second law of gravitational thermodynamics in two scenarios featuring a phantom dominated expansion plus a black hole. The law is violated in both scenarios.  相似文献   

2.
This Letter studies whether the generalized second law of thermodynamics is fulfilled in the transition from a generic initial Einstein static phase to the inflationary phase, with constant Hubble rate, and from the end of the latter to the conventional era of thermal radiation dominated expansion. As it turns out, the said law is satisfied provided the radiation component does not largely contribute to the total energy of the static phase.  相似文献   

3.
In the classical limit no work is needed to couple a system to a bath with sufficiently weak coupling strength (or with arbitrarily finite coupling strength for a linear system) at the same temperature. In the quantum domain this may be expected to change due to system-bath entanglement. Here we show analytically that the work needed to couple a single linear oscillator with finite strength to a bath cannot be less than the work obtainable from the oscillator when it decouples from the bath. Therefore, the quantum second law holds for an arbitrary temperature. This is a generalization of the previous results for zero temperature [Ford and O'Connell, Phys. Rev. Lett. 96, 020402 (2006); Kim and Mahler, Eur. Phys. J. B 54, 405 (2006)]; in the high temperature limit we recover the classical behavior.  相似文献   

4.
We prove two new fundamental uncertainty relations with quantum memory for the Wehrl entropy. The first relation applies to the bipartite memory scenario. It determines the minimum conditional Wehrl entropy among all the quantum states with a given conditional von Neumann entropy and proves that this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The second relation applies to the tripartite memory scenario. It determines the minimum of the sum of the Wehrl entropy of a quantum state conditioned on the first memory quantum system with the Wehrl entropy of the same state conditioned on the second memory quantum system and proves that also this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The Wehrl entropy of a quantum state is the Shannon differential entropy of the outcome of a heterodyne measurement performed on the state. The heterodyne measurement is one of the main measurements in quantum optics and lies at the basis of one of the most promising protocols for quantum key distribution. These fundamental entropic uncertainty relations will be a valuable tool in quantum information and will, for example, find application in security proofs of quantum key distribution protocols in the asymptotic regime and in entanglement witnessing in quantum optics.  相似文献   

5.
The dynamics of a coupled model (harmonic oscillator-relativistic scalar field) in Conformal Robertson-Walker (k = +1) spacetimes is investigated. The exact radiation-reaction equation of the source-including the retarded radiation terms due to the closed space geometry – is obtained and analyzed. A suitable family of Lyapunov functions is constructed to show that, if the spacetime expands monotonely, then the source's energy damps. A numerical simulation of this equation for expanding Universes, with and without Future Event Horizon, is performed.  相似文献   

6.
It was found in [B. Zhang, Q.y. Cai, L. You, M.S. Zhan, Phys. Lett. B 675 (2009) 98] that information is conserved in the process of black hole evaporation, by using the tunneling formulism and considering the correlations between emitted particles. In this Letter, we shall include quantum gravity effects, by taking into account of the log-area correction to Bekenstein–Hawking entropy. The correlation between successively emitted particles is calculated, with Planck-scale corrections. By considering the black hole evaporation process, entropy conservation is checked, and the existence of black hole remnant is emphasized. We conclude in this case information can leak out through the radiation and black hole evaporation is still a unitary process.  相似文献   

7.
We compute the dynamical entropy in the sense of Connes, Narnhofer, and Thirring of shift automorphism of generalized quantum Markov chains as defined by Accardi and Frigerio. For any generalized quantum Markov chain defined via a finite set of conditional density amplitudes, we show that the dynamical entropy is equal to the mean entropy.Research supported in part by the Basic Science Research Program, Korean Ministry of Education, 1993–1994.  相似文献   

8.
We define a diagonal entropy (d-entropy) for an arbitrary Hamiltonian system as Sd=-∑nρnnlnρnn with the sum taken over the basis of instantaneous energy states. In equilibrium this entropy coincides with the conventional von Neumann entropy Sn = −Trρ ln ρ. However, in contrast to Sn, the d-entropy is not conserved in time in closed Hamiltonian systems. If the system is initially in stationary state then in accord with the second law of thermodynamics the d-entropy can only increase or stay the same. We also show that the d-entropy can be expressed through the energy distribution function and thus it is measurable, at least in principle. Under very generic assumptions of the locality of the Hamiltonian and non-integrability the d-entropy becomes a unique function of the average energy in large systems and automatically satisfies the fundamental thermodynamic relation. This relation reduces to the first law of thermodynamics for quasi-static processes. The d-entropy is also automatically conserved for adiabatic processes. We illustrate our results with explicit examples and show that Sd behaves consistently with expectations from thermodynamics.  相似文献   

9.
The von Neumann entropy cannot represent the thermodynamic entropy of equilibrium pure states in isolated quantum systems. The diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, is a natural generalization of the von Neumann entropy and applicable to equilibrium pure states. We show that the diagonal entropy is consistent with the second law of thermodynamics upon arbitrary external unitary operations. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that quantum trajectories under unitary evolution are restricted by the Hamiltonian dynamics and that the external operation is performed without reference to the microscopic state of the system.  相似文献   

10.
Assuming that dark energy may be treated as a fluid with a well-defined temperature, close to equilibrium, we argue that if nowadays there is a transfer of energy between dark energy and dark matter, it must be such that the latter gains energy from the former and not the other way around.  相似文献   

11.
In this work, we have considered the power-law correction of entropy on the horizon. If the flat FRW Universe is filled with the n components fluid with interactions, the GSL of thermodynamics for apparent and event horizons have been investigated for equilibrium and non-equilibrium cases. If we consider a small perturbation around the de Sitter spacetime, the general conditions of the validity of GSL have been found. Also if a phantom dominated Universe has a pole-like type scale factor, the validity of GSL has also been analyzed. Further we have obtained constraints on the power-law parameter α in the phantom and quintessence dominated regimes. Finally we obtain conditions under which GSL breaks down in a cosmological background.  相似文献   

12.
The second law of thermodynamics in nonextensive statistical mechanics is discussed in the quantum regime. Making use of the convexity property of the generalized relative entropy associated with the Tsallis entropy indexed by q, Clausius' inequality is shown to hold in the range q in (0, 2]. This restriction on the range of the entropic index, q, is purely quantum mechanical and there exists no upper bound of q for validity of the second law in classical theory.  相似文献   

13.
Heisenberg’s uncertainty relation for measurement noise and disturbance is commonly understood to state that in any measurement the product of the position measurement noise and the momentum disturbance is not less than Planck’s constant divided by 4π. However, it has been shown in many ways that this relation holds only for a restricted class of measuring apparatuses in the most general formulation of measuring processes. Here, Heisenberg’s uncertainty relation is generalized to a relation that holds for all the possible quantum measurements, from which rigorous conditions are obtained for measuring apparatuses to satisfy Heisenberg’s relation. In particular, every apparatus with the noise and the disturbance statistically independent from the measured object is proven to satisfy Heisenberg’s relation. For this purpose, all the possible quantum measurements are characterized by naturally acceptable axioms. Then, a mathematical notion of the distance between probability operator valued measures and observables is introduced and the basic properties are explored. Based on this notion, the measurement noise and disturbance are naturally defined for any quantum measurements in a model independent formulation. Under this formulation, various relations for noise and disturbance are also derived for apparatuses with independent noise, independent disturbance, unbiased noise, and unbiased disturbance as well as noiseless apparatuses and nondisturbing apparatuses. Two models of position measurements are also discussed in the light of the new uncertainty relations to show that Heisenberg’s relation can be violated even by approximately repeatable position measurements.  相似文献   

14.
15.
V. pek  J. Bok 《Physica A》2001,290(3-4)
One of the previously reported linear models of open quantum systems (interacting with a single thermal bath but otherwise not aided from outside) endowed with the faculty of spontaneous self-organization challenging standard thermodynamics is reconstructed here. It is then able to produce, in a cyclic manner, a useful (this time mechanical) work at the cost of just thermal energy in the bath whose quanta get properly in-phased. This means perpetuum mobile of the second kind explicitly violating the second law in its Thomson formulation. No approximations can be made responsible for the effect as a special scaling procedure is used that makes the chosen kinetic theory exact. The effect is purely quantum and disappears in the classical limit.  相似文献   

16.
We introduce a class of quantum heat engines which consists of two-energy-eigenstate systems, the simplest of quantum mechanical systems, undergoing quantum adiabatic processes and energy exchanges with heat baths, respectively, at different stages of a cycle. Armed with this class of heat engines and some interpretation of heat transferred and work performed at the quantum level, we are able to clarify some important aspects of the second law of thermodynamics. In particular, it is not sufficient to have the heat source hotter than the sink, but there must be a minimum temperature difference between the hotter source and the cooler sink before any work can be extracted through the engines. The size of this minimum temperature difference is dictated by that of the energy gaps of the quantum engines involved. Our new quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realise Maxwell's daemon. Inspired and motivated by the Rabi oscillations, we further introduce some modifications to the quantum heat engines with single-mode cavities in order to, while respecting the second law, extract more work from the heat baths than is otherwise possible in thermal equilibria. Some of the results above are also generalisable to quantum heat engines of an infinite number of energy levels including 1-D simple harmonic oscillators and 1-D infinite square wells, or even special cases of continuous spectra.  相似文献   

17.
Schwarzschild black holes with quantum corrections are studied under scalar field perturbations and electromagnetic field perturbations to analyze the effect of the correction term on the potential function and quasinormal mode (QNM). In classical general relativity, spacetime is continuous and there is no existence of the so-called minimal length. The introduction of the correction items of the generalized uncertainty principle, the parameter β, can change the singularity structure of the black hole gauge and may lead to discretization in time and space. We apply the sixth-order WKB method to approximate the QNM of Schwarzschild black holes with quantum corrections and perform numerical analysis to derive the results of the method. Also, we find that the effective potential and QNM in scalar fields are larger than those in electromagnetic fields.  相似文献   

18.
Braneworld theory provides a natural setting to treat, at a classical level, the cosmological effects of vacuum energy. Non-static extra dimensions can generally lead to a variable vacuum energy, which in turn may explain the present accelerated cosmic expansion. We concentrate our attention in models where the vacuum energy decreases as an inverse power law of the scale factor. These models agree with the observed accelerating universe, while fitting simultaneously the observational data for the density and deceleration parameter. The redshift at which the vacuum energy can start to dominate depends on the mass density of ordinary matter. For m = 0.3, the transition from decelerated to accelerated cosmic expansion occurs at z T ≈ 0.48 ± 0.20, which is compatible with SNe data. We set a lower bound on the deceleration parameter today, namely > − 1 + 3 m /2, i.e., > − 0.55 for m = 0.3. The future evolution of the universe crucially depends on the time when vacuum starts to dominate over ordinary matter. If it dominates only recently, at an epoch z < 0.64, then the universe is accelerating today and will continue that way forever. If vacuum dominates earlier, at z > 0.64, then the deceleration comes back and the universe recollapses at some point in the distant future. In the first case, quintessence and Cardassian expansion can be formally interpreted as the low energy limit of our model, although they are entirely different in philosophy. In the second case there is no correspondence between these models and ours.  相似文献   

19.
With a class of quantum heat engines which consists of two-energy-eigenstate systems undergoing, respectively, quantum adiabatic processes and energy exchanges with heat baths at different stages of a cycle, we are able to clarify some important aspects of the second law of thermodynamics. The quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realize Maxwell's demon. While respecting the second law on the average, they are also capable of extracting more work from the heat baths than is otherwise possible in thermal equilibrium.  相似文献   

20.
We consider a single harmonic oscillator coupled to a bath at zero temperature. As is well-known, the oscillator then has a higher average energy than that given by its ground state. Here we show analytically that for a damping model with arbitrarily discrete distribution of bath modes and damping models with continuous distributions of bath modes with cut-off frequencies, this excess energy is less than the work needed to couple the system to the bath, therefore, the quantum second law is not violated. On the other hand, the second law may be violated for bath modes without cut-off frequencies, which are, however, physically unrealistic models. An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号