首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
As a calcium oscillations system is in steady state, the effects of colored noise and noise delay on the system is investigated using stochastic simulation methods. The results indicate that: (1) the colored noise can induce coherence bi-resonance phenomenon. (2) there exist three peaks in the R–τ0Rτ0 (RR is the reciprocal coefficient of variance, and τ0τ0 is the self-correlation time of the colored noise) curves. For the same noise intensity Q=1Q=1, the Gaussian colored noise can induce calcium spikes but the white noise cannot do this. (3) the delay time can improve noise induced spikes regularity as τ0τ0 is small, and RR has a significant minimum with increasing ττ as τ0τ0 is large. (4) large values of ζζ reduce noise induced spikes regularity.  相似文献   

2.
We introduce a model for the Contact Process with relaxing immunization CPRI  . In this model, local memory is introduced by a time and space dependence of the contamination probability. The model has two parameters: a typical immunization time ττ and a maximum contamination probability aa. The system presents an absorbing state phase transition whenever the contamination probability aa is above a minimum threshold. For short immunization times, the system evolves to a statistically stationary active state. Above τc(a)τc(a), immunization predominates and the system evolves to the absorbing vacuum state. We employ a finite-size scaling analysis to show that the transition belongs to the standard directed percolation universality class. The critical immunization time diverges in the limit of a→1a1. In this regime, the density of active sites decays exponentially as ττ increases, but never reaches the vacuum state in the thermodynamic limit.  相似文献   

3.
We demonstrate the emergence of non-Abelian fusion rules for excitations of a two dimensional lattice model built out of Abelian degrees of freedom. It can be considered as an extension of the usual toric code model on a two dimensional lattice augmented with matter fields. It consists of the usual C(Zp)C(Zp) gauge degrees of freedom living on the links together with matter degrees of freedom living on the vertices. The matter part is described by a nn dimensional vector space which we call HnHn. The ZpZp gauge particles act on the vertex particles and thus HnHn can be thought of as a C(Zp)C(Zp) module. An exactly solvable model is built with operators acting in this Hilbert space. The vertex excitations for this model are studied and shown to obey non-Abelian fusion rules. We will show this for specific values of nn and pp, though we believe this feature holds for all n>pn>p. We will see that non-Abelian anyons of the quantum double of C(S3)C(S3) are obtained as part of the vertex excitations of the model with n=6n=6 and p=3p=3. Ising anyons are obtained in the model with n=4n=4 and p=2p=2. The n=3n=3 and p=2p=2 case is also worked out as this is the simplest model exhibiting non-Abelian fusion rules. Another common feature shared by these models is that the ground states have a higher symmetry than ZpZp. This makes them possible candidates for realizing quantum computation.  相似文献   

4.
We discuss three different ways to arrive at kaon condensation at nc?3n0nc?3n0 where n0n0 is nuclear matter density: (1) Fluctuating around the n=0n=0 vacuum in chiral perturbation theory, (2) fluctuating around nVMnVM near the chiral restoration density nχnχ where the vector manifestation of hidden local symmetry is reached and (3) fluctuating around the Fermi liquid fixed point at ∼n0n0. They all share one common theoretical basis, “hidden local symmetry”. We argue that when the critical density nc<nχnc<nχ is reached in a neutron star, the electrons turn into KK mesons, which go into an s-wave Bose condensate. This reduces the pressure substantially and the neutron star goes into a black hole. Next we develop the argument that the collapse of a neutron star into a black hole takes place for a star of M?1.5MM?1.5M. This means that Supernova 1987A had a black hole as result. We also show that two neutron stars in a binary have to be within 4% of each other in mass, for neutron stars sufficiently massive that they escape helium shell burning. For those that are so light that they do have helium shell burning, after a small correction for this, they must be within 4% of each other in mass. Observations support the proximity in mass inside of a neutron star binary. The result of strangeness condensation is that there are ∼55 times more low-mass black-hole, neutron-star binaries than double neutron-star binaries although the former are difficult to observe.  相似文献   

5.
The idea of a hidden sector of mirror partners of elementary particles has attracted considerable interest as a possible candidate for dark matter. Recently it was pointed out by Berezhiani and Bento that the present experimental data cannot exclude the possibility of a rapid oscillation of the neutron n to a mirror neutron n′ with oscillation time much smaller than the neutron lifetime. A dedicated search for vacuum transitions n→nnn has to be performed at weak magnetic field, where both states are degenerate. We report the result of our experiment, which compares rates of ultracold neutrons after storage at a weak magnetic field well below 20 nT and at a magnetic field strong enough to suppress the seeked transitions. We obtain a new limit for the oscillation time of n–n′ transitions, τosc(90% C.L.)>414 sτosc(90% C.L.)>414 s. The corresponding limit for the mixing energy of the normal and mirror neutron states is δm(90% C.L.)<1.5×10−18 eVδm(90% C.L.)<1.5×10−18 eV.  相似文献   

6.
7.
In this paper, we investigate numerically the Susceptible–Infected–Recovered–Susceptible (SIRS) epidemic model on an exponential network generated by a preferential attachment procedure. The discrete SIRS model considers two main parameters: the duration τ0τ0 of the complete infection–recovery cycle and the duration τIτI of infection. A permanent source of infection I0I0 has also been introduced in order to avoid the vanishing of the disease in the SIRS model. The fraction of infected agents is found to oscillate with a period T≥τ0Tτ0. Simulations reveal that the average fraction of infected agents depends on I0I0 and τI/τ0τI/τ0. A maximum of synchronization of infected agents, i.e. a maximum amplitude of periodic spreading oscillations, is found to occur when the ratio τI/τ0τI/τ0 is slightly smaller than 1/21/2. The model is in agreement with the general observation that an outbreak corresponds to high τI/τ0τI/τ0 values.  相似文献   

8.
The Rabi model describes the simplest interaction between a cavity mode with a frequency ωcωc and a two-level system with a resonance frequency ω0ω0. It is shown here that the spectrum of the Rabi model coincides with the support of the discrete Stieltjes integral measure in the orthogonality relations of recently introduced orthogonal polynomials. The exactly solvable limit of the Rabi model corresponding to Δ=ω0/(2ωc)=0Δ=ω0/(2ωc)=0, which describes a displaced harmonic oscillator, is characterized by the discrete Charlier polynomials in normalized energy ??, which are orthogonal on an equidistant lattice. A non-zero value of ΔΔ leads to non-classical discrete orthogonal polynomials ?k(?)?k(?) and induces a deformation of the underlying equidistant lattice. The results provide a basis for a novel analytic method of solving the Rabi model. The number of ca. 1350 calculable energy levels per parity subspace obtained in double precision (cca 16 digits) by an elementary stepping algorithm is up to two orders of magnitude higher than is possible to obtain by Braak’s solution. Any first nn eigenvalues of the Rabi model arranged in increasing order can be determined as zeros of ?N(?)?N(?) of at least the degree N=n+ntN=n+nt. The value of nt>0nt>0, which is slowly increasing with nn, depends on the required precision. For instance, nt?26nt?26 for n=1000n=1000 and dimensionless interaction constant κ=0.2κ=0.2, if double precision is required. Given that the sequence of the llth zeros xnlxnl’s of ?n(?)?n(?)’s defines a monotonically decreasing discrete flow with increasing nn, the Rabi model is indistinguishable from an algebraically solvable model in any finite precision. Although we can rigorously prove our results only for dimensionless interaction constant κ<1κ<1, numerics and exactly solvable example suggest that the main conclusions remain to be valid also for κ≥1κ1.  相似文献   

9.
Motivated by speculations about infrared deviations from the standard behavior of local quantum field theories, we explore the possibility that such effects might show up as an anomalous running of coupling constants. The most sensitive probes are presently given by the anomalous magnetic moments of the electron and the muon, that suggest that αemαem runs 1.00047±0.000181.00047±0.00018 times faster than predicted by the Standard Model. The running of αemαem and αsαs up to the weak scale is confirmed with a precision at the % level.  相似文献   

10.
11.
We calculate low scale gravity effects on the cross section for neutrino–nucleon scattering at center of mass energies up to the Greisen–Zatsepin–Kuzmin (GZK) scale, in the eikonal approximation. We compare the cases of an infinitely thin brane embedded in n=5n=5 compactified extra-dimensions, and of a brane with a physical tension MS=1 TeVMS=1 TeV and MS=10 TeVMS=10 TeV. The extra dimensional Planck scale MDMD is set at 103 GeV103 GeV and 2×103 GeV2×103 GeV. We also compare our calculations with neutral current standard model calculations in the same energy range, and compare the thin brane eikonal cross section to its saddle point approximation. New physics effects enhance the cross section by orders of magnitude on average. They are quite sensitive to MSMS and MDMD choices, though much less sensitive to n.  相似文献   

12.
13.
14.
The adiabatic sound velocity and compressibility for harmonically trapped ideal anyons in arbitrary dimensions are calculated within Haldane fractional exclusion statistics. The corresponding low-temperature and high-temperature behaviors are studied in detail. To compare with the experimental result of unitary fermions, the sound velocity for anyons in the cigar-shaped trap is derived. The sound velocity for anyons in the disk-shaped trap is also calculated. With the parameter g=0.287g=0.287, the sound velocity of cigar-shaped unitary fermions modeled by anyons is in good agreement with the experimental result, while that of disk-shaped unitary fermions is v0/vF=0.406v0/vF=0.406 with Fermi velocity vFvF.  相似文献   

15.
16.
We discuss three Hamiltonians, each with a central-field part H0H0 and a PT-symmetric perturbation igzigz. When H0H0 is the isotropic Harmonic oscillator the spectrum is real for all gg because HH is isospectral to H0+g2/2H0+g2/2. When H0H0 is the Hydrogen atom then infinitely many eigenvalues are complex for all gg. If the potential in H0H0 is linear in the radial variable rr then the spectrum of HH exhibits real eigenvalues for 0<g<gc0<g<gc and a PT phase transition at gcgc.  相似文献   

17.
A family of spherically symmetric solutions with horizon in the model with m  -component anisotropic fluid is presented. The metrics are defined on a manifold that contains a product of n−1n1 Ricci-flat “internal” spaces. The equation of state for any s  -th component is defined by a vector UsUs belonging to Rn+1Rn+1. The solutions are governed by moduli functions HsHs obeying non-linear differential equations with certain boundary conditions imposed. A simulation of black brane solutions in the model with antisymmetric forms is considered. An example of solution imitating M2–M5M2M5 configuration (in D=11D=11 supergravity) corresponding to Lie algebra A2A2 is presented.  相似文献   

18.
The large-n expansion is applied to the calculation of thermal critical exponents describing the critical behavior of spatially anisotropic d-dimensional systems at m  -axial Lifshitz points. We derive the leading non-trivial 1/n1/n correction for the perpendicular correlation-length exponent νL2νL2 and hence several related thermal exponents to order O(1/n)O(1/n). The results are consistent with known large-n expansions for d  -dimensional critical points and isotropic Lifshitz points, as well as with the second-order epsilon expansion about the upper critical dimension d?=4+m/2d?=4+m/2 for generic m∈[0,d]m[0,d]. Analytical results are given for the special case d=4d=4, m=1m=1. For uniaxial Lifshitz points in three dimensions, 1/n1/n coefficients are calculated numerically. The estimates of critical exponents at d=3d=3, m=1m=1 and n=3n=3 are discussed.  相似文献   

19.
We analyze the statistical complexity measure vs. entropy plane-representation of sampled chaotic attractors as a function of the sampling period ττ and show that, if the Bandt and Pompe procedure is used to assign a probability distribution function (PDF) to the pertinent time series, the statistical complexity measure (SCM) attains a definite maximum for a specific sampling period  tMtM. On the contrary, the usual histogram approach for assigning PDFs to a time series leads to essentially constant SCM values for any sampling period ττ. The significance of tMtM is further investigated by comparing it with typical times found in the literature for the two main reconstruction processes: the Takens’ one in a delay-time embedding, on one hand, and the exact Nyquist–Shannon reconstruction, on the other one. It is shown that tMtM is compatible with those times recommended as adequate delay ones in Takens’ reconstruction. The reported results correspond to three representative chaotic systems having correlation dimension 2<D2<32<D2<3. One recent experiment confirms the analysis presented here.  相似文献   

20.
In this paper, we try to propose a toy model, which follows the majority rule with the Fermi function, to uncover the role of the heterogeneous interaction between individuals in opinion formation. In order to do this, we define the impact factor IFiIFi, says individual ii, as the exponential function of its connectivity kiki with the tunable parameter ββ. ββ also shows the public information that can be collected by individuals in the system. We realize our model in scale-free networks with mean connectivity 〈k〉k. We find that much more public information (β>β2β>β2) and less public information (β<β1β<β1) cannot let either of the two opinions be the majority during the opinion formation. Furthermore, β1β1 is a constant and equal to −0.76(±0.04)0.76(±0.04), and β2β2 decreases as a power-law function of the mean connectivity 〈k〉k of the network. Our work can provide some perspectives and tools to understand the diversity of opinion in social networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号