首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work focuses on an improved exact algorithm for addressing an NP-hard network pricing problem. The method involves an efficient and partial generation of candidate solutions, a recursive scheme for generating improved upper bounds, and a column generation procedure for solving the network-structured subproblems. Its efficiency is assessed against both randomly generated instances involving three distinct topologies as well as instances based on real life situations in telecommunication and freight transportation.  相似文献   

2.
We present an extension to the multi-product newsvendor problem by incorporating the retailer’s pricing decision as well as considering supplier quantity discount. The objective is to maximize the expected profit of the retailer through jointly determining the ordering quantities and selling prices for the products, subject to multiple capacity constraints. We formulate the problem as a Generalized Disjunctive Programming (GDP) model and develop a Lagrangian heuristic approach for its solution. Randomly produced instances involving up to 1000 products are used to test the proposed approach. Computational results show that the Lagrangian heuristic approach can present very good solutions to all instances in reasonable time.  相似文献   

3.
An iterative scheme for solving ill-posed nonlinear operator equations with monotone operators is introduced and studied in this paper. A discrete version of the Dynamical Systems Method (DSM) algorithm for stable solution of ill-posed operator equations with monotone operators is proposed and its convergence is proved. A discrepancy principle is proposed and justified. A priori and a posteriori stopping rules for the iterative scheme are formulated and justified. AMS subject classification (2000)  47J05, 47J06, 47J35, 65R30  相似文献   

4.
Almost monotone approximation is proposed for nonlinear two‐points problem. A general framework is given for studying the existence and uniqueness of numerical solutions. A discrete approximation with high accuracy is constructed. Nonlinear Jacobi iteration and Gauss–Seidel iteration are introduced to save work. The continuous approximation is also considered. The numerical results show the advantages of such an approach. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
In this paper, we analyze an optimization problem for the first (nonlinear) Steklov eigenvalue plus a boundary potential with respect to the potential function which is assumed to be uniformly bounded and with fixed L1L1-norm.  相似文献   

6.
We study a model linear convection-diffusion-reaction problem where both the diffusion term and the convection term are multiplied by small parameters εd and εc, respectively. Depending on the size of the parameters the solution of the problem may exhibit exponential layers at both end points of the domain. Sharp bounds for the derivatives of the solution are derived using a barrier-function technique. These bounds are applied in the analysis of a simple upwind-difference scheme on Shishkin meshes. This method is established to be almost first-order convergent, independently of the parameters εd and εc.  相似文献   

7.
We address the dynamic lot size problem assuming time-varying storage capacities. The planning horizon is divided into T periods and stockouts are not allowed. Moreover, for each period, we consider a setup cost, a holding unit cost and a production/ordering unit cost, which can vary through the planning horizon. Although this model can be solved using O(T3) algorithms already introduced in the specialized literature, we show that under this cost structure an optimal solution can be obtained in O(T log T) time. In addition, we show that when production/ordering unit costs are assumed to be constant (i.e., the Wagner–Whitin case), there exists an optimal plan satisfying the Zero Inventory Ordering (ZIO) property.  相似文献   

8.
In the present work, a stochastic maximum principle for discounted control of a certain class of degenerate diffusion processes with global Lipschitz coefficient is investigated. The value function is given by a discounted performance functional, leading to a stochastic maximum principle of semi-couple forward–backward stochastic differential equation with non-smooth coefficients. The proof is based on the approximation of the Lipschitz coefficients by smooth ones and the approximation of the infinite horizon adjoint process.  相似文献   

9.
An algorithm for solving a two-person game with information transfer is proposed. The algorithm is based on a special linear programming problem. An example is given.  相似文献   

10.
We consider a nonlinear heat conduction problem for a semi-infinitematerial x > 0, with phase-change temperature T1, an initialtemperature T2 (> T1) and a heat flux of the type q (t) =q0/t imposed on the fixed face x = 0. We assume that the volumetricheat capacity and the thermal conductivity are particular nonlinearfunctions of the temperature in both solid and liquid phases. We determine necessary and/or sufficient conditions on the parametersof the problem in order to obtain the existence of an explicitsolution for an instantaneous nonlinear twophase Stefan problem(solidification process).  相似文献   

11.
The aim of this research is to present a new iterative procedure in approximating nonlinear system of algebraic equations with applications in integral equations as well as partial differential equations (PDEs). The presented scheme consists of several steps to reach a high rate of convergence and also an improved index of efficiency. The theoretical parts are furnished, and several computational tests mainly arising from practical problems are given to manifest its applicability.  相似文献   

12.
In this paper, we consider an optimization problem for a parallel queueing system with two heterogeneous servers. Each server has its own queue and customers arrive at each queue according to independent Poisson processes. Each service time is independent and exponentially distributed. When a customer arrives at queue 1, the customers in queue 1 can be transferred to queue 2 by paying an assignment cost which is proportional to the number of moved customers. Holding cost is a function of the pair of queue lengths of the two servers. Our objective is to minimize the expected total discounted cost. We use the dynamic programming approach for this problem. Considering the pair of queue lengths as a state space, we show that the optimal policy has a switch over structure under some conditions on the holding cost.  相似文献   

13.
An initial boundary value problem for a quasilinear equation of pseudoparabolic type with a nonlinear boundary condition of the Neumann–Dirichlet type is investigated in this work. From a physical point of view, the initial boundary value problem considered here is a mathematical model of quasistationary processes in semiconductors and magnets, which takes into account a wide variety of physical factors. Many approximate methods are suitable for finding eigenvalues and eigenfunctions in problems where the boundary conditions are linear with respect to the desired function and its derivatives. Among these methods, the Galerkin method leads to the simplest calculations. On the basis of a priori estimates, we prove a local existence theorem and uniqueness for a weak generalized solution of the initial boundary value problem for the quasilinear pseudoparabolic equation. A special place in the theory of nonlinear equations is occupied by the study of unbounded solutions, or, as they are called in another way, blow-up regimes. Nonlinear evolutionary problems admitting unbounded solutions are globally unsolvable. In the article, sufficient conditions for the blow-up of a solution in a finite time in a limited area with a nonlinear Neumann–Dirichlet boundary condition are obtained.  相似文献   

14.
A class of time‐dependent singularly perturbed convection‐diffusion problems with retarded terms arising in computational neuroscience is considered. In particular, a numerical scheme for the parabolic convection‐diffusion problem where the second‐order derivative with respect to the spatial direction is multiplied by a small perturbation parameter and the shifts are of is constructed. The Taylor series expansion is used to tackle the shift terms. The continuous problem is semidiscretized using the Crank‐Nicolson finite difference method in the temporal direction and the resulting set of ordinary differential equations is discretized using a midpoint upwind finite difference scheme on an appropriate piecewise uniform mesh, which is dense in the boundary layer region. It is shown that the proposed numerical scheme is second‐order accurate in time and almost first‐order accurate in space with respect to the perturbation parameter . To validate the computational results and efficiency of the method some numerical examples are encountered and the numerical results are compared with some existing results. It is observed that the numerical approximations are fairly good irrespective of the size of the delay and the advance till they are of . The effect of the shifts on the boundary layer has also been observed.  相似文献   

15.
16.
We consider a new combinatorial optimization problem that combines network design and facility location aspects. Given a graph with two types of customers and two technologies that can be installed on the edges, the objective is to find a minimum cost subtree connecting all customers while the primary customers are served by a primary subtree that is embedded into the secondary subtree. In addition, besides fixed link installation costs, facility opening costs, associated to each node where primary and secondary subtree connect, have to be paid. The problem is called the Two Level Network Design Problem with Transition Facilities (TLNDF).  相似文献   

17.
Fully implicit schemes with second‐order time evolutions have been applied to simulate nonlinear diffusion problems precisely for a long time, but there is seldom theoretical study for either their convergence properties or efficient iterations. Here, a second‐order time evolution fully implicit scheme for two‐dimensional nonlinear divergence diffusion problem is analyzed. The unique existence of its solution is given. Two new methods are provided to prove its convergence, including entire inductive hypothesis reasoning and a two‐step reasoning process. Rigorous analysis shows the scheme is stable; its solution has second‐order convergence in both space and time to the exact solution of the problem. The convergence is applied to analyze a Newton iteration accelerating the computation and show its quadratic convergent speed and second‐order accuracy. The reasoning techniques also adapt to first‐order time accuracy schemes, and can be extended to analyze a wide class of nonlinear schemes for nonlinear problems. Numerical tests highlight the theoretical results and demonstrate the high performance of the algorithms. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 121–140, 2016  相似文献   

18.
Conservative finite-difference schemes are constructed for the problems of self-action of a femtosecond laser pulse and of second-harmonic generation in a one-dimensional nonlinear photonic crystal with nonreflecting boundary conditions. The invariants of the governing equations are found taking into account these conditions. Nonreflecting conditions substantially improve the efficiency of conservative finite-difference schemes used in the modeling of complex nonlinear effects in photonic crystals, which require much smaller steps in space and time than those used in the case of linear propagation. The numerical experiments performed show that the boundary reflects no more than 0.01% of the transmitted energy, which corresponds to the truncation error in the boundary conditions. The amplitude of the reflected pulse is less than that of the pulse transmitted through the boundary by two (and more) orders of magnitude. The simulation is based on the approach proposed by the authors for the given class of problems.  相似文献   

19.
In this article, an efficient difference scheme for the coupled fractional Ginzburg–Landau equations with the fractional Laplacian is studied. We construct the discrete scheme based on the implicit midpoint method in time and a weighted and shifted Grünwald difference method in space. Then, we prove that the scheme is uniquely solvable, and the numerical solutions are bounded and unconditionally convergent in the norm. Finally, numerical tests are given to confirm the theoretical results and show the effectiveness of the scheme.  相似文献   

20.
We consider the inverse source problem for a time fractional diffusion equation. The unknown source term is independent of the time variable, and the problem is considered in two dimensions. A biorthogonal system of functions consisting of two Riesz bases of the space L2[(0,1) × (0,1)], obtained from eigenfunctions and associated functions of the spectral problem and its adjoint problem, is used to represent the solution of the inverse problem. Using the properties of the biorthogonal system of functions, we show the existence and uniqueness of the solution of the inverse problem and its continuous dependence on the data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号