首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the performance of various state-of-the-art classification algorithms applied to eight real-life credit scoring data sets. Some of the data sets originate from major Benelux and UK financial institutions. Different types of classifiers are evaluated and compared. Besides the well-known classification algorithms (eg logistic regression, discriminant analysis, k-nearest neighbour, neural networks and decision trees), this study also investigates the suitability and performance of some recently proposed, advanced kernel-based classification algorithms such as support vector machines and least-squares support vector machines (LS-SVMs). The performance is assessed using the classification accuracy and the area under the receiver operating characteristic curve. Statistically significant performance differences are identified using the appropriate test statistics. It is found that both the LS-SVM and neural network classifiers yield a very good performance, but also simple classifiers such as logistic regression and linear discriminant analysis perform very well for credit scoring.  相似文献   

2.
With the fast development of financial products and services, bank’s credit departments collected large amounts of data, which risk analysts use to build appropriate credit scoring models to evaluate an applicant’s credit risk accurately. One of these models is the Multi-Criteria Optimization Classifier (MCOC). By finding a trade-off between overlapping of different classes and total distance from input points to the decision boundary, MCOC can derive a decision function from distinct classes of training data and subsequently use this function to predict the class label of an unseen sample. In many real world applications, however, owing to noise, outliers, class imbalance, nonlinearly separable problems and other uncertainties in data, classification quality degenerates rapidly when using MCOC. In this paper, we propose a novel multi-criteria optimization classifier based on kernel, fuzzification, and penalty factors (KFP-MCOC): Firstly a kernel function is used to map input points into a high-dimensional feature space, then an appropriate fuzzy membership function is introduced to MCOC and associated with each data point in the feature space, and the unequal penalty factors are added to the input points of imbalanced classes. Thus, the effects of the aforementioned problems are reduced. Our experimental results of credit risk evaluation and their comparison with MCOC, support vector machines (SVM) and fuzzy SVM show that KFP-MCOC can enhance the separation of different applicants, the efficiency of credit risk scoring, and the generalization of predicting the credit rank of a new credit applicant.  相似文献   

3.
The credit scoring is a risk evaluation task considered as a critical decision for financial institutions in order to avoid wrong decision that may result in huge amount of losses. Classification models are one of the most widely used groups of data mining approaches that greatly help decision makers and managers to reduce their credit risk of granting credits to customers instead of intuitive experience or portfolio management. Accuracy is one of the most important criteria in order to choose a credit‐scoring model; and hence, the researches directed at improving upon the effectiveness of credit scoring models have never been stopped. In this article, a hybrid binary classification model, namely FMLP, is proposed for credit scoring, based on the basic concepts of fuzzy logic and artificial neural networks (ANNs). In the proposed model, instead of crisp weights and biases, used in traditional multilayer perceptrons (MLPs), fuzzy numbers are used in order to better model of the uncertainties and complexities in financial data sets. Empirical results of three well‐known benchmark credit data sets indicate that hybrid proposed model outperforms its component and also other those classification models such as support vector machines (SVMs), K‐nearest neighbor (KNN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA). Therefore, it can be concluded that the proposed model can be an appropriate alternative tool for financial binary classification problems, especially in high uncertainty conditions. © 2013 Wiley Periodicals, Inc. Complexity 18: 46–57, 2013  相似文献   

4.
在海量征信数据的背景下,为降低缺失数据插补的计算成本,提出收缩近邻插补方法.收缩近邻方法通过三阶段完成数据插补,第一阶段基于样本和变量的缺失比例计算入样概率,通过不等概抽样完成数据的收缩,第二阶段基于样本间距离,选取与缺失样本近邻的样本组成训练集,第三阶段建立随机森林模型进行迭代插补.利用Australian数据集和中国各银行数据集进行模拟研究,结果表明在确保一定插补精度的情况下,收缩近邻方法较大程度减少了计算量.  相似文献   

5.
A fuzzy random forest   总被引:4,自引:0,他引:4  
When individual classifiers are combined appropriately, a statistically significant increase in classification accuracy is usually obtained. Multiple classifier systems are the result of combining several individual classifiers. Following Breiman’s methodology, in this paper a multiple classifier system based on a “forest” of fuzzy decision trees, i.e., a fuzzy random forest, is proposed. This approach combines the robustness of multiple classifier systems, the power of the randomness to increase the diversity of the trees, and the flexibility of fuzzy logic and fuzzy sets for imperfect data management. Various combination methods to obtain the final decision of the multiple classifier system are proposed and compared. Some of them are weighted combination methods which make a weighting of the decisions of the different elements of the multiple classifier system (leaves or trees). A comparative study with several datasets is made to show the efficiency of the proposed multiple classifier system and the various combination methods. The proposed multiple classifier system exhibits a good accuracy classification, comparable to that of the best classifiers when tested with conventional data sets. However, unlike other classifiers, the proposed classifier provides a similar accuracy when tested with imperfect datasets (with missing and fuzzy values) and with datasets with noise.  相似文献   

6.
Due to the recent financial turmoil, a discussion in the banking sector about how to accomplish long term success, and how to follow an exhaustive and powerful strategy in credit scoring is being raised up. Recently, the significant theoretical advances in machine learning algorithms have pushed the application of kernel-based classifiers, producing very effective results. Unfortunately, such tools have an inability to provide an explanation, or comprehensible justification, for the solutions they supply. In this paper, we propose a new strategy to model credit scoring data, which exploits, indirectly, the classification power of the kernel machines into an operative field. A reconstruction process of the kernel classifier is performed via linear regression, if all predictors are numerical, or via a general linear model, if some or all predictors are categorical. The loss of performance, due to such approximation, is balanced by better interpretability for the end user, which is able to order, understand and to rank the influence of each category of the variables set in the prediction. An Italian bank case study has been illustrated and discussed; empirical results reveal a promising performance of the introduced strategy.  相似文献   

7.
Reject inference is a method for inferring how a rejected credit applicant would have behaved had credit been granted. Credit-quality data on rejected applicants are usually missing not at random (MNAR). In order to infer credit-quality data MNAR, we propose a flexible method to generate the probability of missingness within a model-based bound and collapse Bayesian technique. We tested the method's performance relative to traditional reject-inference methods using real data. Results show that our method improves the classification power of credit scoring models under MNAR conditions.  相似文献   

8.
利用传统支持向量机(SVM)对不平衡数据进行分类时,由于真实的少数类支持向量样本过少且难以被识别,造成了分类时效果不是很理想.针对这一问题,提出了一种基于支持向量机混合采样的不平衡数据分类方法(BSMS).该方法首先对经过支持向量机分类的原始不平衡数据按照所处位置的不同划分为支持向量区(SV),多数类非支持向量区(MN...  相似文献   

9.
The last years have seen the development of many credit scoring models for assessing the creditworthiness of loan applicants. Traditional credit scoring methodology has involved the use of statistical and mathematical programming techniques such as discriminant analysis, linear and logistic regression, linear and quadratic programming, or decision trees. However, the importance of credit grant decisions for financial institutions has caused growing interest in using a variety of computational intelligence techniques. This paper concentrates on evolutionary computing, which is viewed as one of the most promising paradigms of computational intelligence. Taking into account the synergistic relationship between the communities of Economics and Computer Science, the aim of this paper is to summarize the most recent developments in the application of evolutionary algorithms to credit scoring by means of a thorough review of scientific articles published during the period 2000–2012.  相似文献   

10.
Decision-tree algorithm provides one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Over the years, additional methodologies have been investigated and proposed to deal with continuous or multi-valued data, and with missing or noisy features. Recently, with the growing popularity of fuzzy representation, some researchers have proposed to utilize fuzzy representation in decision trees to deal with similar situations. This paper presents a survey of current methods for Fuzzy Decision Tree (FDT) designment and the various existing issues. After considering potential advantages of FDT classifiers over traditional decision tree classifiers, we discuss the subjects of FDT including attribute selection criteria, inference for decision assignment and stopping criteria. To be best of our knowledge, this is the first overview of fuzzy decision tree classifier.  相似文献   

11.
12.
General procedures are proposed for nonparametric classification in the presence of missing covariates. Both kernel-based imputation as well as Horvitz-Thompson-type inverse weighting approaches are employed to handle the presence of missing covariates. In the case of imputation, it is a certain regression function which is being imputed (and not the missing values). Using the theory of empirical processes, the performance of the resulting classifiers is assessed by obtaining exponential bounds on the deviations of their conditional errors from that of the Bayes classifier. These bounds, in conjunction with the Borel-Cantelli lemma, immediately provide various strong consistency results.  相似文献   

13.
Soccer video summarization and classification is becoming a very important topic due to the world wide importance and popularity of soccer games which drives the need to automatically classify video scenes thus enabling better sport analysis, refereeing, training, advertisement, etc. Machine learning has been applied to the task of sports video classification. However, for some specific image and video problems (like sports video scenes classification), the learning task becomes convoluted and difficult due to the dynamic nature of the video sequence and the associated uncertainties relating to changes in light conditions, background, camera angle, occlusions and indistinguishable scene features, etc. The majority of previous techniques (such as SVM, neural network, decision tree, etc.) applied to sports video classifications did not provide a consummate solution, and such models could not be easily understood by human users; meanwhile, they increased the complexity and time of computation and the associated costs of the involved standalone machines. Hence, there is a need to develop a system which is able to address these drawbacks and handle the high levels of uncertainty in video scenes classification and undertake the heavy video processing securely and efficiently on a cloud computing based instance. Hence, in this paper we present a cloud computing based multi classifier systems which aggregates three classifiers based on neural networks and two fuzzy logic classifiers based on type-1 fuzzy logic and type-2 fuzzy logic classification systems which were optimized by a Big-Bang Big crunch optimization to maximize the system performance. We will present several real world experiments which shows the proposed classification system operating in real-time to produce high classification accuracies for soccer videos which outperforms the standalone classification systems based on neural networks, type-1 and type-2 fuzzy logic systems.  相似文献   

14.
Credit scoring is a method of modelling potential risk of credit applications. Traditionally, logistic regression and discriminant analysis are the most widely used approaches to create scoring models in the industry. However, these methods are associated with quite a few limitations, such as being instable with high-dimensional data and small sample size, intensive variable selection effort and incapability of efficiently handling non-linear features. Most importantly, based on these algorithms, it is difficult to automate the modelling process and when population changes occur, the static models usually fail to adapt and may need to be rebuilt from scratch. In the last few years, the kernel learning approach has been investigated to solve these problems. However, the existing applications of this type of methods (in particular the SVM) in credit scoring have all focused on the batch model and did not address the important problem of how to update the scoring model on-line. This paper presents a novel and practical adaptive scoring system based on an incremental kernel method. With this approach, the scoring model is adjusted according to an on-line update procedure that can always converge to the optimal solution without information loss or running into numerical difficulties. Non-linear features in the data are automatically included in the model through a kernel transformation. This approach does not require any variable reduction effort and is also robust for scoring data with a large number of attributes and highly unbalanced class distributions. Moreover, a new potential kernel function is introduced to further improve the predictive performance of the scoring model and a kernel attribute ranking technique is used that adds transparency in the final model. Experimental studies using real world data sets have demonstrated the effectiveness of the proposed method.  相似文献   

15.
Since credit scoring was first applied in the 1940s the standard methodology has been to treat consumer lending decisions as binary classification problems, where the goal has been to make the best possible ‘good/bad’ classification of accounts on the basis of their eventual delinquency status. However, the real goal of commercial lending organizations is to forecast continuous financial measures such as contribution to profit, but there has been little research in this area. In this paper, continuous models of customer worth are compared to binary models of customer repayment behaviour. Empirical results show that while models of customer worth do not perform well in terms of classifying accounts by their good/bad status, they significantly outperform standard classification methodologies when ranking accounts based on their financial worth to lenders.  相似文献   

16.
The 2004 Basel II Accord has pointed out the benefits of credit risk management through internal models using internal data to estimate risk components: probability of default (PD), loss given default, exposure at default and maturity. Internal data are the primary data source for PD estimates; banks are permitted to use statistical default prediction models to estimate the borrowers’ PD, subject to some requirements concerning accuracy, completeness and appropriateness of data. However, in practice, internal records are usually incomplete or do not contain adequate history to estimate the PD. Current missing data are critical with regard to low default portfolios, characterised by inadequate default records, making it difficult to design statistically significant prediction models. Several methods might be used to deal with missing data such as list-wise deletion, application-specific list-wise deletion, substitution techniques or imputation models (simple and multiple variants). List-wise deletion is an easy-to-use method widely applied by social scientists, but it loses substantial data and reduces the diversity of information resulting in a bias in the model's parameters, results and inferences. The choice of the best method to solve the missing data problem largely depends on the nature of missing values (MCAR, MAR and MNAR processes) but there is a lack of empirical analysis about their effect on credit risk that limits the validity of resulting models. In this paper, we analyse the nature and effects of missing data in credit risk modelling (MCAR, MAR and NMAR processes) and take into account current scarce data set on consumer borrowers, which include different percents and distributions of missing data. The findings are used to analyse the performance of several methods for dealing with missing data such as likewise deletion, simple imputation methods, MLE models and advanced multiple imputation (MI) alternatives based on MarkovChain-MonteCarlo and re-sampling methods. Results are evaluated and discussed between models in terms of robustness, accuracy and complexity. In particular, MI models are found to provide very valuable solutions with regard to credit risk missing data.  相似文献   

17.
Credit applicants are assigned to good or bad risk classes according to their record of defaulting. Each applicant is described by a high-dimensional input vector of situational characteristics and by an associated class label. A statistical model, which maps the inputs to the labels, can decide whether a new credit applicant should be accepted or rejected, by predicting the class label given the new inputs. Support vector machines (SVM) from statistical learning theory can build such models from the data, requiring extremely weak prior assumptions about the model structure. Furthermore, SVM divide a set of labelled credit applicants into subsets of ‘typical’ and ‘critical’ patterns. The correct class label of a typical pattern is usually very easy to predict, even with linear classification methods. Such patterns do not contain much information about the classification boundary. The critical patterns (the support vectors) contain the less trivial training examples. For instance, linear discriminant analysis with prior training subset selection via SVM also leads to improved generalization. Using non-linear SVM, more ‘surprising’ critical regions may be detected, but owing to the relative sparseness of the data, this potential seems to be limited in credit scoring practice.  相似文献   

18.
The classification system is very important for making decision and it has been attracted much attention of many researchers. Usually, the traditional classifiers are either domain specific or produce unsatisfactory results over classification problems with larger size and imbalanced data. Hence, genetic algorithms (GA) are recently being combined with traditional classifiers to find useful knowledge for making decision. Although, the main concerns of such GA-based system are the coverage of less search space and increase of computational cost with the growth of population. In this paper, a rule-based knowledge discovery model, combining C4.5 (a Decision Tree based rule inductive algorithm) and a new parallel genetic algorithm based on the idea of massive parallelism, is introduced. The prime goal of the model is to produce a compact set of informative rules from any kind of classification problem. More specifically, the proposed model receives a base method C4.5 to generate rules which are then refined by our proposed parallel GA. The strength of the developed system has been compared with pure C4.5 as well as the hybrid system (C4.5 + sequential genetic algorithm) on six real world benchmark data sets collected from UCI (University of California at Irvine) machine learning repository. Experiments on data sets validate the effectiveness of the new model. The presented results especially indicate that the model is powerful for volumetric data set.  相似文献   

19.
In previous studies, a wrapper feature selection method for decision support in steel sheet incremental cold shaping process (SSICS) was proposed. The problem included both regression and classification, while the learned models were neural networks and support vector machines, respectively. SSICS is the type of problem for which the number of features is similar to the number of instances in the data set, this represents many of real world decision support problems found in the industry. This study focuses on several questions and improvements that were left open, suggesting proposals for each of them. More specifically, this study evaluates the relevance of the different cross validation methods in the learned models, but also proposes several improvements such as allowing the number of chosen features as well as some of the parameters of the neural networks to evolve, accordingly. Well-known data sets have been use in this experimentation and an in-depth analysis of the experiment results is included. 5 $\times $ 2 CV has been found the more interesting cross validation method for this kind of problems. In addition, the adaptation of the number of features and, consequently, the model parameters really improves the performance of the approach. The different enhancements have been applied to the real world problem, an several conclusions have been drawn from the results obtained.  相似文献   

20.
信用分类是信用风险管理中一个重要环节,其主要目的是根据信用申请客户提供的资料从申请客户中区分出可信客户和违约客户,以便为信用决策者提供决策依据.为了正确区分不同的信用客户,特别是违约客户,结合核主元分析和支持向量机算法构造基于核主元分析的带可变惩罚因子最小二乘模糊支持向量机模型对信用数据进行了分类处理.在基于核主元分析的带可变惩罚因子最小二乘模糊支持向量机模型中,首先对样本数据进行预处理,然后利用核主元分析以非线性方式降低数据的维数,最后利用带可变惩罚因子最小二乘模糊支持向量机模型对降维后数据进行分类分析.为了验证,选择两个公开的信用数据集来进行实证分析.实证结果表明:基于核主元分析的带可变惩罚因子最小二乘模糊支持向量机模型取得了较好的分类结果,可为信用决策者提供重要的决策参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号