首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by leptogenesis for characteristic neutrino mass parameters. We find that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous BL breaking. A quantitative analysis leads to constraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10−5 eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter.  相似文献   

2.
3.
In the string theory framework for physics beyond the standard model the hidden sector of E8×E8 heterotic string theory and the graviton multiplet provide compelling sources for the dark matter in the universe.

In the present investigation I consider the graviton multiplet as one particular dark matter source in heterotic string theory. In particular, it is pointed out that an appreciable fraction of dark matter from the graviton multiplet requires a mass generating phase transition around Tc108 GeV, where the symmetry partners of the graviton would evolve from an ultrahard fluid to pressureless dark matter. This indicates m10 MeV for the massive components of the graviton multiplet, and it is reassuring that the corresponding dilaton lifetime τ1017 s is compatible with a dark matter interpretation.  相似文献   


4.
If the supersymmetry (SUSY) is a solution to the hierarchy problem, it is puzzling that any SUSY particle has not been discovered yet. We show that there is a low-scale conformal gauge mediation model which contains all necessary ingredients, i.e. not only a SUSY-breaking dynamics and a gauge mediation mechanism, but also a candidate for the dark matter. The model has only one free mass parameter, that is, the mass for messengers. In this model, the dark matter is provided by a composite particle in the SUSY-breaking sector, and the observed value of the dark matter density uniquely fixes the mass of messengers at the order of 102 TeV. Then, the sfermion and gaugino masses are fixed to be of order 102103 GeV102103 GeV without any arbitrariness, thus the SUSY particles are expected not to be discovered at the Tevatron or LEP, while having a discovery possibility at the LHC.  相似文献   

5.
S. Heinemeyer 《Pramana》2007,69(5):947-951
Electroweak precision measurements can provide indirect information about the possible scale of supersymmetry already at the present level of accuracy. We review present day sensitivities of precision data in mSUGRA-type models with the gravitino as the lightest supersymmetric particle (LSP). The χ 2 fit is based on M W , sin2 θ eff, (g−2) μ , BR(b) and the lightest MSSM Higgs boson mass, M h . We find indications for relatively light soft supersymmetry-breaking masses, offering good prospects for the LHC and the ILC, and in some cases also for the Tevatron.   相似文献   

6.
The false vacuum decay in a brane world model is studied in this work. We investigate the vacuum decay via the Coleman-de Luccia instanton, derive explicit approximative expressions for the Coleman-de Luccia instanton which is close to a Hawking-Moss instanton and compare the results with those already obtained within Einstein's theory of relativity.  相似文献   

7.
We discuss a possibility to relate neutrino mass to dark matter. If we suppose that neutrino masses are generated through a radiative seesaw mechanism, dark matter may be identified with a stable field which is relevant to the neutrino mass generation. The model is severely constrained by lepton flavor violating processes. We show some solutions to this constraint.  相似文献   

8.
PAMELA's observation that the cosmic ray positron fraction increases rapidly with energy implies the presence of primary sources of energetic electron–positron pairs. Of particular interest is the possibility that dark matter annihilations in the halo of the Milky Way provide this anomalous flux of antimatter. The recent measurement of the cosmic ray electron spectrum by the Fermi Gamma Ray Space Telescope, however, can be used to constrain the nature of any such dark matter particle. In particular, it has been argued that in order to accommodate the observations of Fermi and provide the PAMELA positron excess, annihilating dark matter particles must be as massive as ∼1 TeV or heavier. In this Letter, we revisit Fermi's electron spectrum measurement within the context of annihilating dark matter, focusing on masses in the range of 100–1000 GeV, and considering effects such as variations in the astrophysical backgrounds from the presence of local cosmic ray accelerators, and the finite energy resolution of the Fermi Gamma Ray Space Telescope. When these factors are taken into account, we find that dark matter particles as light as ∼300 GeV can be capable of generating the positron fraction observed by PAMELA.  相似文献   

9.
10.
Leszek Roszkowski 《Pramana》2004,62(2):389-401
Dark matter (DM) is presumably made of some new, exotic particles that appear in extensions of the standard model. After giving a brief overview of some popular candidates, I discuss in more detail the most appealing case of the supersymmetric neutralino.  相似文献   

11.
12.
We show how an adequate post-Newtonian generalization can be obtained for Newtonian dark matter halos associated with an empiric density profile. Applying this approach to halos that follow from the well known numerical simulations of Navarro, Frenk and White (NFW), we derive all dynamical variables and show that NFW halos approximately follow an ideal gas type of equation of state which fits very well to a polytropic relation in the region outside the core. This fact suggests that outer regions of NFW halos might be related to equilibrium states in the non-extensive Statistical Mechanics formalism proposed by Tsallis.  相似文献   

13.
Since its launch in 2008, the Large Area Telescope, onboard the Fermi Gamma-ray Space Telescope, has detected the largest amount of gamma rays, in the 20 MeV 300 GeV energy range and electrons + positrons in the 7 GeV-1 TeV range. These impressive statistics allow one to perform a very sensitive indirect experimental search for dark matter. I will present the latest results on these searches.  相似文献   

14.
In this work the evolution of a Universe model is investigated where a scalar field, non-minimally coupled to space-time curvature, plays the role of quintessence and drives the Universe to a present accelerated expansion. A non-relativistic dark matter constituent that interacts directly with dark energy is also considered, where the dark matter particle mass is assumed to be proportional to the value of the scalar field. Two models for dark matter pressure are considered: the usual one, pressureless, and another that comes from a thermodynamic theory and relates the pressure with the coupling between the scalar field and the curvature scalar. Although the model has a strong dependence on the initial conditions, it is shown that the mixture consisted of dark components plus baryonic matter and radiation can reproduce the expected red-shift behavior of the deceleration parameter, density parameters and luminosity distance.  相似文献   

15.
It is shown that the Hyperbolic Branch of the radiative electroweak symmetry breaking contains in it three regions: the Focal Point, Focal Curves, and Focal Surfaces. Further, the Focal Point is shown to lie on the boundary of a Focal Curve. These focal regions allow for a small μ while scalar masses can become large and may lie in the several TeV region. It is shown that for the mSUGRA model the current LHC-7 constraint depletes the Focal Point region while regions on Focal Curves and Focal Surfaces remain largely intact. The LHC implications for models which lie on Focal Curves are briefly discussed as well as the implications of dark matter constraints for the Focal Point, Focal Curves and Focal Surfaces are discussed.  相似文献   

16.
A new class of sterile neutrino dark matter is suggested by an explanation for time variations in the solar neutrino flux in which coupling of sterile neutrinos to other matter is via a very small flavor off-diagonal transition magnetic moment, TMM. The dark matter sterile neutrino’s decay in the radiative channel then depends on the local magnetic field and the unknown value of the TMM. An interesting application of this model uses the DAMA/LIBRA claimed detection of dark matter (assuming they are observing the electromagnetic signal) to provide the decay rate in the Earth’s field, and hence the TMM value. That version of the model is then examined to see if it can be falsified by cosmic X-ray observations or by other direct detection experiments. Particularly the latter could provide a simple, definitive test of this dark matter candidate, which would bring concordance to these experiments.  相似文献   

17.
We study the capabilities of the Fermi-LAT instrument on board of the Fermi mission to constrain particle dark matter properties, as annihilation cross section, mass and branching ratio into dominant annihilation channels, with gamma-ray observations from the Galactic Center. Besides the prompt gamma-ray flux, we also take into account the contribution from the electrons/positrons produced in dark matter annihilations to the gamma-ray signal via inverse Compton scattering off the interstellar photon background, which turns out to be crucial in the case of dark matter annihilations into μ+μ and e+e pairs. We study the signal dependence on different parameters like the region of observation, the density profile, the assumptions for the dark matter model and the uncertainties in the propagation model. We also show the effect of the inclusion of a 20% systematic uncertainty in the gamma-ray background. If Fermi-LAT is able to distinguish a possible dark matter signal from the large gamma-ray background, we show that for dark matter masses below ∼200 GeV, Fermi-LAT will likely be able to determine dark matter properties with good accuracy.  相似文献   

18.
A neutral Dirac fermion ψ   with a nonzero magnetic dipole moment is supplied as a singlet within the context of the standard model and is considered as a dark matter candidate near the electroweak scale (10–1000 GeV101000 GeV). We discuss its dynamics with the ordinary matters through the magnetic dipole moment. The magnetic dipole moment constrained by the relic abundance may be as large as 10−1810−17e⋅cm10181017ecm. We show that the elastic scattering is due to a spin–spin interaction for the direct detections and the predictions are under experimental exclusion limits of the current direct detectors, XENON10 and CDMS II, and consider the possibility of dark matter detection in the future.  相似文献   

19.
The direct limit of electric dipole moment and direct searches for dark matter by electric dipole interaction are investigated with including the electromagnetic nuclear form factor, in case that the dark matter candidate is a Dirac particle. The electric dipole moment of dark matter constrained by direct searches must be lower than 7×10−22e cm for dark matter mass of 100 GeV to satisfy the current experimental exclusion limits at XENON10 and CDMS II. The CP violation of electric dipole moment and the dark matter discovery by electric dipole interaction in the future are considered.  相似文献   

20.
周康  岳瑞宏  杨战营  邹德成 《中国物理 B》2012,21(7):79801-079801
The gravitational effect of spontaneous symmetry breaking vacuum energy density is investigated by subtracting the flat space-time contribution from the energy in the curved space-time. We find that the remaining effective energy-momentum tensor is too small to cause the acceleration of the universe, although it satisfies the characteristics of dark energy. However, it could provide a promising explanation to the puzzle of why the gravitational effect produced by the huge symmetry breaking vacuum energy in the electroweak theory has not been observed, as it has a sufficiently small value (smaller than the observed cosmic energy density by a factor of 1032).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号