首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
郑伟  许厚泽  钟敏  员美娟 《中国物理 B》2012,21(10):109101-109101
The accuracy of the Earth’s gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry(SGG) are contrastively demonstrated based on the analytical error model and numerical simulation,respectively.Firstly,the new analytical error model of the cumulative geoid height,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established,respectively.In 250 degrees,the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 1/2 times higher than that measured by the three-dimensional gravity gradient V ij.Secondly,the Earth’s gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation,respectively.The study results show that when the measurement error of the gravity gradient is 3×10 12 /s 2,the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees,respectively.The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%-40% on average compared with that using the radial gravity gradient V zz in 250 degrees.Finally,by mutual verification of the analytical error model and numerical simulation,the orders of magnitude from the accuracies of the Earth’s gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients,respectively.Therefore,it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 13 /s 2-10 15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.  相似文献   

2.
Conformal transformation as a mathematical tool has been used in many areas of gravitational physics. In this paper, we consider gravity’s rainbow, in which the metric can be treated as a conformal rescaling of the original metric. By using the conformal transformation technique, we get a specific form of a modified Newton’s constant and cosmological constant in gravity’s rainbow, which implies that the total vacuum energy is dependent on probe energy. Moreover, the result shows that Einstein gravity’s rainbow can be described by energy-dependent \(f(E,\tilde{R})\) gravity. At last, we study the f(R) gravity, when gravity’s rainbow is considered, which can also be described as energy-dependent \(\tilde{f}(E,\tilde{R})\) gravity.  相似文献   

3.
We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature singularity. Likewise, typical observers do not experience Big Bang singularity. Unlike Hermitian gravity (Mantz and Prokopec in , 2008), holomorphic gravity does not respect the reciprocity symmetry and thus it is mainly a toy model for a gravity theory formulated on complex space-times. Yet it is a model that deserves a closer investigation since in many aspects it resembles Hermitian gravity and yet calculations are simpler. Our study of light bending and gravitational waves in weak holomorphic gravitational fields strongly suggests that holomorphic gravity reduces to general relativity at large distance scales.  相似文献   

4.
It is well known that Einstein gravity is non-renormalizable; however a generalized approach is proposed that leads to Einstein gravity after renormalization. This then implies that at least one candidate for quantum gravity treats all matter on an equal footing with regard to the gravitational behaviour. Harsh constraints are also placed on any anti-matter gravity theory if one does not wish to violate the conservation of energy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
With entropic interpretation of gravity proposed by Verlinde, we obtain the Friedmann equation of the Friedmann-Robertson-Walker universe for the deformed Ho\v{r}ava-Lifshitz gravity. It is shown that, when the parameter of Ho\v{r}ava-Lifshitz gravityω→∝, the modified Friedmann equation will go back to the one in Einstein gravity. This results may imply that the entropic interpretation of gravity is effective for the deformed Ho\v{r}ava-Lifshitz gravity.  相似文献   

6.
In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).  相似文献   

7.
Recently a renormalizable model of gravity has been proposed, which might be a UV completion of General Relativity (GR) or its infra-red modification, probably with a strongly coupled scalar mode. Although the generic vacuum of the theory is anti-de Sitter one, particular limits of the theory allow for the Minkowski vacuum. In this limit (though without consideration of the strongly coupled scalar field) post-Newtonian coefficients of spherically symmetric solutions coincide with those of the General Relativity. Thus the deviations from the convenient GR should be tested beyond the post-Newtonian corrections, that is for a system with strong gravity at astrophysical scales. In this Letter we consider potentially observable properties of black holes in the deformed Horava–Lifshitz gravity with Minkowski vacuum: the gravitational lensing and quasinormal modes. We have showed that the bending angle is seemingly smaller in the considered Horava–Lifshitz gravity than in GR. The quasinormal modes of black holes are longer lived and have larger real oscillation frequency in the Horava–Lifshitz gravity than in GR. These corrections should be observable in the near future experiments on lensing and by gravitational antennas, helping to constrain parameters of the Horava–Lifshitz gravity or to discard it.  相似文献   

8.
We calculate small correction terms to gravitational potential near an asymmetric BPS brane embedded in a 5D AdS-Minkowski space in the context of supergravity. The normalizable wave functions of gravity fluctuations around the brane describe only massive modes. We compute such wave functions analytically in the thin wall limit. We estimate the correction to gravitational potential for small and long distances, and show that there is an intermediate range of distances in which we can identify 4D gravity on the brane below a crossover scale. The 4D gravity is metastable and for distances much larger than the crossover scale the 5D gravity is recovered.  相似文献   

9.
We discuss the structure of Dyson-Schwinger equations in quantum gravity and conclude in particular that all relevant skeletons are of first order in the loop number. There is an accompanying sub-Hopf algebra on gravity amplitudes equivalent to identities between n-graviton scattering amplitudes which generalize the Slavnov-Taylor identities. These identities map the infinite number of charges and finite numbers of skeletons in gravity to an infinite number of skeletons and a finite number of charges needing renormalization. Our analysis suggests that gravity, regarded as a probability conserving but perturbatively non-renormalizable theory, is renormalizable after all, thanks to the structure of its Dyson-Schwinger equations.  相似文献   

10.
G. E. Volovik 《JETP Letters》2009,89(11):525-528
Recently Hořava proposed a model for gravity which is described by the Einstein action in the infrared, but lacks the Lorentz invariance in the high-energy region where it experiences the anisotropic scaling. We test this proposal using two condensed matter examples of emergent gravity: acoustic gravity and gravity emerging in the fermionic systems with Fermi points. We suggest that quantum hydrodynamics, which together with the quantum gravity is the non-renormalizable theory, may exhibit the anisotropic scaling in agreement with the proposal. The Fermi point scenario of emergent general relativity demonstrates that under general conditions, the infrared Einstein action may be distorted, i.e., the Hořava parameter λ is not necessarily equal 1 even in the low energy limit. The consistent theory requires special hierarchy of the ultra-violet energy scales and the fine-tuning mechanism for the Newton constant. The article is published in the original.  相似文献   

11.
We study accelerating cosmological solutions of a general class of non-linear gravities which depend on Gauss–Bonnet and other higher derivative invariants. To achieve this goal a local formulation with auxiliary scalars for arbitrary higher-derivative non-local gravity is developed. It is demonstrated that non-local Gauss–Bonnet gravity can be reduced, in the local formulation, to a model of string-inspired scalar-Gauss–Bonnet gravity. A natural unification, in the theory here developed, of the early-time inflation epoch with a late-time acceleration stage can also be realized.  相似文献   

12.
A way to a self-consistent physically acceptable formulation of quantum gravity field theory is found. The simplified model of quantized conformally-flat gravity and a massive scalar field is analyzed.  相似文献   

13.
Topological matter with Weyl points, such as superfluid 3He-A, provide an explicit example where there is a direct connection between the properly determined vacuum energy and the cosmological constant of the effective gravity emerging in condensed matter. This is in contrast to the acoustic gravity emerging in Bose-Einstein condensates (S. Finazzi, S. Liberati, and L. Sindoni, Phys. Rev. Lett. 108, 071101 (2012); arXiv:1103.4841). The advantage of topological matter is that the relativistic fermions and gauge bosons emerging near the Weyl point obey the same effective metric and thus the effective gravity is more closely related to real gravity. We study this connection in the bi-metric gravity emerging in 3He-A, and its relation to the graviton masses, by comparison with a fully relativistic bi-metric theory of gravity. This shows that the parameter ??, which in 3He-A is the bi-metric generalization of the cosmological constant, coincides with the difference in the proper energy of the vacuum in two states (the nonequilibrium state without gravity and the equilibrium state in which gravity emerges) and is on the order of the characteristic Planck energy scale of the system. Although the cosmological constant ?? is huge, the cosmological term T ??? ?? itself is naturally non-constant and vanishes in the equilibrium vacuum, as dictated by thermodynamics. This suggests that the equilibrium state of any system including the final state of the Universe is not gravitating.  相似文献   

14.
We describe our explicit Lorentz-invariant solution of the Einstein and null geodesic equations for the deflection experiment of 2002 September 8 when a massive moving body, Jupiter, passed within 3.7’ of a line-of-sight to a distant quasar. We develop a general relativistic framework which shows that our measurement of the retarded position of a moving light-ray deflecting body (Jupiter) by making use of the gravitational time delay of quasar’s radio wave is equivalent to comparison of the relativistic laws of the Lorentz transformation for gravity and light. Because, according to Einstein, the Lorentz transformation of gravity field variables must depend on a fundamental speed c, its measurement through the retarded position of Jupiter in the gravitational time delay allows us to study the causal nature of gravity and to set an upper limit on the speed of propagation of gravity in the near zone of the solar system as contrasted to the speed of the radio waves. In particular, the v/c term beyond of the standard Einstein’s deflection, which we measured to 20% accuracy, is associated with the aberration of the null direction of the gravity force (“aberration of gravity”) caused by the Lorentz transformation of the Christoffel symbols from the static frame of Jupiter to the moving frame of observer. General relativistic formulation of the experiment identifies the aberration of gravity with the retardation of gravity because the speed of gravitational waves in Einstein’s theory is equal to the speed of propagation of the gravity force. We discuss the misconceptions which have inhibited the acceptance of this interpretation of the experiment. We also comment on other interpretations of this experiment by Asada, Will, Samuel, Pascual–Sánchez, and Carlip and show that their “speed of light” interpretations confuse the Lorentz transformation for gravity with that for light, and the fundamental speed of gravity with the physical speed of light from the quasar. For this reason, the “speed of light” interpretations are not entirely consistent with a retarded Liénard–Wiechert solution of the Einstein equations, and do not properly incorporate how the phase of the radio waves from the quasar is perturbed by the retarded gravitational field of Jupiter. Although all of the formulations predict the same deflection to the order of v/c, our formulation shows that the underlying cause of this deflection term is associated with the aberration of gravity and not of light, and that the interpretations predict different deflections at higher orders of v/c beyond the Shapiro delay, thus, making their measurement highly desirable for deeper testing of general relativity in future astrometric experiments like Gaia, SIM, and SKA.  相似文献   

15.
Numerical simulations of laminar coflow methane/air diffusion flames at atmospheric pressure and different gravity levels were conducted to gain a better understanding of the effects of gravity on soot formation by using relatively detailed gas-phase chemistry and complex thermal and transport properties coupled with a semi-empirical two-equation soot model. Thermal radiation was calculated using the discrete-ordinates method coupled with a non-grey model for the radiative properties of CO, CO2, H2O, and soot. Calculations were conducted for three coflow air velocities of 77.6, 30, and 5 cm/s to investigate how the coflowing air velocity affects the flame structure and soot formation at different levels of gravity. The coflow air velocity has a rather significant effect on the streamwise velocity and the fluid parcel residence time, especially at reduced gravity levels. The flame height and the visible flame height in general increase with decreasing the gravity level. The peak flame temperature decreases with decreasing either the coflow air stream velocity or the gravity level. The peak soot volume fraction of the flame at microgravity can either be greater or less than that of its normal gravity counterpart, depending on the coflow air velocity. At sufficiently high coflow air velocity, the peak soot volume fraction increases with decreasing the gravity level. When the coflow air velocity is low enough, soot formation is greatly suppressed at microgravity and extinguishment occurs in the upper portion of the flame with soot emission from the tip of the flame owing to incomplete oxidation. The numerical results provide further insights into the intimate coupling between flame size, residence time, thermal radiation, and soot formation at reduced gravity level. The importance of thermal radiation heat transfer and coflow air velocity to the flame structure and soot formation at microgravity is demonstrated for the first time.  相似文献   

16.
Both projectable and non-projectable versions of Horava-Lifshitz gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra scalar mode which can be problematic. A new formulation of non-projectable Horava-Lifshitz gravity, naturally realized as a representation of the master constraint algebra studied by loop quantum gravity researchers, is presented. This yields a consistent canonical theory with first class constraints. It captures the essence of Horava-Lifshitz gravity in retaining only spatial diffeomorphisms (instead of full space-time covariance) as the physically relevant non-trivial gauge symmetry; at the same time the local Hamiltonian constraint needed to eliminate the extra mode is equivalently enforced by the master constraint.  相似文献   

17.
We investigate propagations of graviton and additional scalar on four-dimensional anti-de Sitter (AdS4) space using f(R) gravity models with external sources. It is shown that there is the van Dam–Veltman–Zakharov (vDVZ) discontinuity in f(R) gravity models because f(R) gravity implies GR with additional scalar. This clearly indicates a difference between general relativity and f(R) gravity.  相似文献   

18.
A new version of tetrad gravity in globally hyperbolic, asymptotically flat at spatial infinity spacetimes with Cauchy surfaces diffeomorphic to R 3 is obtained by using a new parametrization of arbitrary cotetrads to define a set of configurational variables to be used in the ADM metric action. Seven of the fourteen first class constraints have the form of the vanishing of canonical momenta. A comparison is made with other models of tetrad gravity and with the ADM canonical formalism for metric gravity.  相似文献   

19.
The canonical covariant formalism (CCF) of the topological five-dimensional Chern–Simons gravity is constructed. Because this gravity model naturally contains a Gauss–Bonnet term, the extended CCF valid for higher curvature gravity must be used. In this framework, the primary constraint and the total Hamiltonian are found. By using the equations of the CCF, it is shown that the bosonic five-form which defines the total Hamiltonian is a first-class dynamical quantity strongly conserved. In this context the equations of motion are also analyzed. To determine the effective interactions of the model, the toroidal dimensional reduction of the five-dimensional Chern–Simons gravity is carried out. Finally the first-order CCF and the usual canonical vierbein formalism (CVF) are related and the Hamiltonian as generator of time evolution is constructed in terms of the first-class constraints of the coupled system.  相似文献   

20.
We show that for four-dimensional spacetimes with a non-null hypersurface orthogonal Killing vector and for a Chern–Simons (CS) background (non-dynamical) scalar field, which is constant along the Killing vector, the source-free equations of CS modified gravity decouple into their Einstein and Cotton constituents. Thus, the model supports only general relativity solutions. We also show that, when the cosmological constant vanishes and the gradient of the CS scalar field is parallel to the non-null hypersurface orthogonal Killing vector of constant length, CS modified gravity reduces to topologically massive gravity in three dimensions. Meanwhile, with the cosmological constant such a reduction requires an appropriate source term for CS modified gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号