首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
交通事故、恶劣天气以及偶发的交通拥堵等都会导致道路交通网络中行程时间的不确定性,极大地影响了道路交通系统的可靠性,同时给日常生活中出行计划的制定以及出行路径的选择带来了不便。因此,本次研究将综合考虑道路交通网络中由于交通流量的全天变化所导致的路径行程时间的时变特征,以及由于事故、天气等不确定因素所导致的路径行程时间的随机特征,并以此作为路网环境的假设条件,对出行路径选择问题进行研究。具体地,首先建立行程时间的动态随机变量,并在此基础上模拟构建了随机时变网络。随后,定义了该网络环境下路径选择过程中所考虑的成本费用,并通过鲁棒优化的方法,将成本费用鲁棒性最强的路径视为最优路径。随后,在随机一致性条件下,通过数学推导证明了该模型可以简化为解决一个确定性时变网络中的最短路径问题。最终,具有多项式时间计算复杂度的改进Dijkstra算法被应用到模型的求解中,并通过小型算例验证模型及算法的有效性。结果表明,本研究中所提出的方法可以被高效率算法所求解,并且不依赖于先验行程时间概率分布的获取,因此对后续的大规模实际城市道路网络应用提供了良好的理论基础。此外,由于具有行程时间随机时变特征的交通网络更接近实际道路情况,因此本次研究的研究成果具有较高的实际意义和应用价值。  相似文献   

2.
Multi-level network optimization problems arise in many contexts such as telecommunication, transportation, and electric power systems. A model for multi-level network design is formulated as a mixed-integer program. The approach is innovative because it integrates in the same model aspects of discrete facility location, topological network design, and dimensioning. We propose a branch-and-bound algorithm based on Lagrangian relaxation to solve the model. Computational results for randomly generated problems are presented showing the quality of our approach. We also present and discuss a real world problem of designing a two-level local access urban telecommunication network and solving it with the proposed methodology.  相似文献   

3.
Mathematical programming has been proposed in the literature as an alternative technique to simulating a special class of Discrete Event Systems. There are several benefits to using mathematical programs for simulation, such as the possibility of performing sensitivity analysis and the ease of better integrating the simulation and optimisation. However, applications are limited by the usually long computational times. This paper proposes a time-based decomposition algorithm that splits the mathematical programming model into a number of submodels that can be solved sequentially to make the mathematical programming approach viable for long running simulations. The number of required submodels is the solution of an optimisation problem that minimises the expected time for solving all of the submodels. In this way, the solution time becomes a linear function of the number of simulated entities.  相似文献   

4.
This paper proposes a two step algorithm for solving a large scale semi-definite logit model, which is appreciated as a powerful model in failure discriminant analysis. This problem has been successfully solved by a cutting plane (outer approximation) algorithm. However, it requires much more computation time than the corresponding linear logit model. A two step algorithm to be proposed in this paper is intended to reduce the amount of computation time by eliminating a certain portion of the data based on the information obtained by solving an associated linear logit model. It will be shown that this algorithm can generate a solution with almost the same quality as the solution obtained by solving the original large scale semi-definite model within a fraction of computation time.  相似文献   

5.
This paper studies an inventory routing problem (IRP) with split delivery and vehicle fleet size constraint. Due to the complexity of the IRP, it is very difficult to develop an exact algorithm that can solve large scale problems in a reasonable computation time. As an alternative, an approximate approach that can quickly and near-optimally solve the problem is developed based on an approximate model of the problem and Lagrangian relaxation. In the approach, the model is solved by using a Lagrangian relaxation method in which the relaxed problem is decomposed into an inventory problem and a routing problem that are solved by a linear programming algorithm and a minimum cost flow algorithm, respectively, and the dual problem is solved by using the surrogate subgradient method. The solution of the model obtained by the Lagrangian relaxation method is used to construct a near-optimal solution of the IRP by solving a series of assignment problems. Numerical experiments show that the proposed hybrid approach can find a high quality near-optimal solution for the IRP with up to 200 customers in a reasonable computation time.  相似文献   

6.
In order to design or redesign urban transportation networks, the employment of mathematical models is very useful for predicting the effects of possible modifications of implementing. Such models allow the determination of vehicular flows and travel times for every link of the network from the knowledge of its inherent features and the corresponding traffic demand. They are based on a phenomenological law of the social collective behavior of the drivers called Wardrop principle. It is an optimization problem, in general, very demanding from the computational point of view.In order to accelerate the computation process, in this paper, a continuum model for the urban traffic is proposed. The fundamental assumption behind this theory is that the variation of network properties is small in close regions when compared with the full system. Accordingly, it is possible to use continuous functions for representing travel times or vehicular flows. Essentially, the problem is formulated as a system of non-linear anisotropic diffusion (differential) equations that can be conveniently solved by means of the finite element method. The efficiency of the proposed model is studied by means of a comparison with results obtained with the classical optimization approach. As shown, the results are similar although the computation times are significantly reduced.  相似文献   

7.
This paper investigates the transit passenger origin–destination (O–D) estimation problem in congested transit networks where updated passenger counts and outdated O–D matrices are available. The bi-level programming approach is used for the transit passenger O–D estimation problem. The upper level minimizes the sum of error measurements in passenger counts and O–D matrices, and the lower level is a new frequency-based stochastic user equilibrium (SUE) assignment model that can determine simultaneously the passenger overload delays and passenger route choices in congested transit network together with the resultant transit line frequencies. The lower-level problem can be formulated as either a logit-type or probit-type SUE transit assignment problem. A heuristic solution algorithm is developed for solving the proposed bi-level programming model which is applicable to congested transit networks. Finally, a case study on a simplified transit network connecting Kowloon urban area and the Hong Kong International Airport is provided to illustrate the applications of the proposed bi-level programming model and solution algorithm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In this paper, an algorithm for the fast computation of network reliability bounds is proposed. The evaluation of the network reliability is an intractable problem for very large networks, and hence approximate solutions based on reliability bounds have assumed importance. The proposed bounds computation algorithm is based on an efficient BDD representation of the reliability graph model and a novel search technique to find important minpaths/mincuts to quickly reduce the gap between the reliability upper and lower bounds. Furthermore, our algorithm allows the control of the gap between the two bounds by controlling the overall execution time. Therefore, a trade-off between prediction accuracy and computational resources can be easily made in our approach. The numerical results are presented for large real example reliability graphs to show the efficacy of our approach.  相似文献   

9.
In this paper we propose an Ant Colony Optimisation (ACO) algorithm for defining the signal settings on urban networks following a local approach. This consists in optimising the signal settings of each intersection of an urban network as a function only of traffic flows at the accesses to the same intersection, taking account of the effects of signal settings on costs and on user route choices. This problem, also known as Local Optimisation of Signal Settings (LOSS), has been widely studied in the literature and can be formulated as an asymmetric assignment problem. The proposed ACO algorithm is based on two kinds of behaviour of artificial ants which allow the LOSS problem to be solved: traditional behaviour based on the response to pheromones for simulating user route choice, and innovative behaviour based on the pressure of an ant stream for solving the signal setting definition problem. Our results on real-scale networks show that the proposed approach allows the solution to be obtained in less time but with the same accuracy as in traditional MSA (Method of Successive Averages) approaches.  相似文献   

10.
本文在传统资源受限项目调度问题(resource-constrained project scheduling problem, RCPSP)中引入资源转移时间,为有效获得问题的最优解,采用资源流编码方式表示可行解,建立了带有资源转移时间的RCPSP资源流优化模型,目标为最小化项目工期。根据问题特征设计了改进的资源流重构邻域算子,分别设计了改进的禁忌搜索算法和贪心随机自适应禁忌搜索算法求解模型。数据实验结果表明,相较于现有文献中的方法,所提两种算法均可针对更多的项目实例求得最优解,并且得到最优解的时间更短,求解效率更高。此外,分析了算法在求解具有不同特征的项目实例时的性能,所得结果为项目经理结合项目特征评价算法适用性提供了指导。  相似文献   

11.
Reduced affine arithmetic (RAA) eliminates the main deficiency of the standard affine arithmetic (AA), i.e. a gradual increase of the number of noise symbols, which makes AA inefficient in a long computation chain. To further reduce overestimation in RAA computation, a new algorithm for the Chebyshev minimum-error multiplication of reduced affine forms is proposed. The algorithm yields the minimum Chebyshev-type bounds and works in linear time, which is asymptotically optimal. We also propose a simplified \(\mathcal {O}(n\log n)\) version of the algorithm, which performs better for low dimensional problems. Illustrative examples show that the presented approach significantly improves solutions of many numerical problems, such as the problem of solving parametric interval linear systems or parametric linear programming, and also improves the efficiency of interval global optimisation.  相似文献   

12.
A new approach for solving the generalized assignment problem (GAP) is proposed that combines the exact branch & bound approach with the heuristic strategy of tabu search (TS) to produce a hybrid algorithm for solving GAP. The algorithm described uses commercial software to solve sub-problems generated by the TS guiding strategy. The TS approach makes use of the concept of referent domain optimisation and introduces novel add/drop strategies. In addition, the linear programming relaxation of GAP that forms part of the branch & bound approach is itself helpful in suggesting which variables might take binary values. Computational results on benchmark test instances are presented and compared with results obtained by the standard branch & bound approach and also several other heuristic approaches from the literature. The results show the new algorithm performs competitively against the alternatives and is able to find some new best solutions for several benchmark instances.  相似文献   

13.
An optimization model with one linear objective function and fuzzy relation equation constraints was presented by Fang and Li (1999) as well as an efficient solution procedure was designed by them for solving such a problem. A more general case of the problem, an optimization model with one linear objective function and finitely many constraints of fuzzy relation inequalities, is investigated in this paper. A new approach for solving this problem is proposed based on a necessary condition of optimality given in the paper. Compared with the known methods, the proposed algorithm shrinks the searching region and hence obtains an optimal solution fast. For some special cases, the proposed algorithm reaches an optimal solution very fast since there is only one minimum solution in the shrunk searching region. At the end of the paper, two numerical examples are given to illustrate this difference between the proposed algorithm and the known ones.  相似文献   

14.
Supply chain system is an integrated production system of a product. In the past researches, this system was often assumed to be an equilibrium structure, but in real production process, some members in this system usually cannot effectively complete their production task because of the losses of production, which will reduce the performance of the whole supply chain production system. This supply chain with the losses of production is called the defective supply chain (DSC) system. This research will discuss the partner selection and the production–distribution planning in this DSC network system. Besides the cost of production and transportation, the reliability of the structure and the unbalance of this system caused by the losses of production are considered. Then a germane mathematical programming model is developed for solving this problem. Due to the complex problem and in order to get a satisfactory near-optimal solution with great speed, this research proposes seeking the solution with the solving model based on ant colony algorithm. The application results in real cases show that the solving model presented by this research can quickly and effectively plan the most suitable type of the DSC network and decision-making of the production–distribution. Finally, a comparative numerical experiment is performed by using the proposed approach and the common single-phase ant colony algorithm (SAC) to demonstrate the performance of the proposed approach. The analysis results show that the proposed approach can outperform the SAC in partner selection and production–distribution planning for DSC network design.  相似文献   

15.
In this paper the lexicographic optimisation of the multiobjective generalised network flow problem is considered. Optimality conditions are proved on the basis of the equivalence of this problem and a weighted generalised network flow problem. These conditions are used to develop a network-based algorithm which properly modifies primal-dual algorithms for minimum cost generalised network flow problems. Computational results indicate that this algorithm is faster than general-purpose algorithms for linear lexicographic optimisation. Besides, this model is used for approaching a water resource system design problem.  相似文献   

16.
In this paper, a neural network model is constructed on the basis of the duality theory, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalle invariance principle to solve geometric programming (GP) problems. The main idea is to convert the GP problem into an equivalent convex optimization problem. A neural network model is then constructed for solving the obtained convex programming problem. By employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the original problem. The simulation results also show that the proposed neural network is feasible and efficient.  相似文献   

17.
This paper presents a co-evolutionary particle swarm optimization (PSO) algorithm, hybridized with noising metaheuristics, for solving the delay constrained least cost (DCLC) path problem, i.e., shortest-path problem with a delay constraint on the total “cost” of the optimal path. The proposed algorithm uses the principle of Lagrange relaxation based aggregated cost. It essentially consists of two concurrent PSOs for solving the resulting minimization-maximization problem. The main PSO is designed as a hybrid PSO-noising metaheuristics algorithm for efficient global search to solve the minimization part of the DCLC-Lagrangian relaxation by finding multiple shortest paths between a source-destination pair. The auxiliary/second PSO is a co-evolutionary PSO to obtain the optimal Lagrangian multiplier for solving the maximization part of the Lagrangian relaxation problem. For the main PSO, a novel heuristics-based path encoding/decoding scheme has been devised for representation of network paths as particles. The simulation results on several networks with random topologies illustrate the efficiency of the proposed hybrid algorithm for the constrained shortest path computation problems.  相似文献   

18.
An interactive approach for solving bi-objective optimisation problems with multiple decision-makers in a context where the decisions are made via the strict majority voting rule is proposed. An adequate use of projection and decomposition techniques leads to a hierarchical algorithm in which the upper level is represented by a relaxed version of the bi-objective problem in the objective space. The feasibility of the partial consensus obtained in the upper (decision) level by the strict majority voting rule is tested in the lower (analysis) level of the algorithm. Some properties of the relaxed bi-objective problem allow that different preference structures of the decision-makers can be represented by appropriate multiobjective methods. The paper includes numerical examples that illustrate the characteristics of the approach proposed.  相似文献   

19.
蚁群系统作为一种蚁群算法是解决最短路径问题的一种行之有效的方法.然而,它自身也存在着一些缺陷,主要针对基本蚁群算法易陷入局部最优这一缺陷对其进行改进,集中体现在初始信息素求解和信息素更新这两方面.为了进一步了解改进蚁群算法的优点,进行了实验仿真:将改进的蚁群算法应用子模拟医疗救护GIS中,利用GIS的网络分析功能对城市道路网络的最短路径选择算法进行了深入地探讨研究,并以山西省太原市的交通路线作为实例进行研究.计算机仿真结果表明,改进的蚁群算法在解决最短路径问题时较基本蚁群算法的性能好,它具有一定的理论参考价值和现实意义.  相似文献   

20.
This paper deals with the transit passenger origin-destination (O-D) estimation problem by using updated passenger counts in congested transit networks and outdated prior O-D matrix. A bilevel programming approach is extended for the transit passenger O-D updating problem where the upper-level problem seeks to minimize the sum of error measurements in passenger counts and O-D matrices, while the lower level is the stochastic user equilibrium assignment problem for congested transit networks. The transit assignment framework is based on a frequency-adaptive transit network model in this paper, which can help determine transit line frequencies and the network flow pattern simultaneously in congested transit networks. A heuristic solution algorithm is adapted for solving the transit passenger O-D estimation problem. Finally, a numerical example is used to illustrate the applications of the proposed model and solution algorithm. The work described in this paper was mainly supported by two research grants from the Research Grants Council of the Hong Kong Special Administrative Region (Project No. PolyU 5143/03E and PolyU 5040/02E).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号