首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of first-principles theoretical study of the structural, electronic and optical properties of SrCl2 in its cubic structure, have been performed using the full-potential linear augmented plane-wave method plus local orbitals (FP-APW+lo) as implemented in the WIEN2k code. In this approach both the local density approximation (LDA) and the generalized gradient approximation (GGA) are used for the exchange-correlation (XC) potential. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. We performed these calculations with and without spin-orbit interactions. Including spin-orbit coupling cause to lifts the triple degeneracy at Γ point and a double degeneracy at X point. Results are given for structural properties. The pressure dependence of elastic constants and band gaps are investigated. The dielectric function, reflectivity spectra and refractive index are calculated up to 30 eV. Also we calculated the pressure and volume dependence of the static optical dielectric constant.  相似文献   

2.
We have calculated the anisotropic frequency dependent dielectric function for the 1T and 2H phases of TaS2 and TaSe2 using the linear muffin tin orbital method within the atomic sphere approximation. We find significant anisotropy in the frequency dependent dielectric function for the 1T and 2H phases at low energies (less than 4 eV). Unfortunately there are no experimental data to compare with. The averaged dielectric function agrees with the available experimental data except that the calculated peak heights are underestimated and shifted to higher energies by 1–2eV.  相似文献   

3.
We have performed systematic first principle calculations for the electronic and optical properties of a narrow band gap semiconductor InN in cubic and wurtzite phases by ‘state-of-the-art’ DFT calculations within generalized gradient approximation (GGA) and Engel-Vosko's corrected generalized gradient approximation (EVGGA) using full potential linear augmented plane wave (FPLAPW) method as implemented in WIEN2k code. The total energy for the wurtzite phase of InN was found to be smaller by 0.0184 Ry/molecule by cubic phase which confirms the greater stability of the wurtzite structure than the cubic one. Band structure, effective masses, density of states, valence charge densities, and dielectric functions are computed and presented in detail. The critical points are extracted out of calculated dielectric function, compared with available measured data and are explained in terms of transitions occurred in the band structure along different symmetry and antisymmetry lines. The valence band maxima and conduction band minima are strongly dominated by N-2p states and located at the Γ-symmetrical line which predicts its direct band gap nature in both phases.  相似文献   

4.
We determine the structural, electronic, elastic and optical properties of fluoro-perovskite KZnF3 using the full potential linear augmented plane wave approach (FP-LAPW) based on the density functional theory (DFT). The exchange-correlation potential is treated by the local density approximation (LDA) and the generalized gradient approximation (GGA). The calculated structural parameters are in good agreement with the available data. We have obtained an indirect band gap. The effect of the pressure on the band gaps is investigated. We evaluate the elastic constants (Cij), elastic moduli and the Debye temperature. The imaginary and the real parts of the dielectric function ε(ω) and some optical constants are also calculated.  相似文献   

5.
We have performed full potential linear augmented plane wave calculations to investigate the pressure induced phase transition in ZnTe. Total energies of three phases (zinc-blende, cinnabar and Cmcm) are calculated using density functional theory formalism under generalized gradient approximation and Engel-Vosko generalized gradient approximation for the exchange correlation potential approximation. The pressure stability corresponding to zinc-blende, cinnabar and Cmcm phases of ZnTe are computed. We find that cinnabar phase could be formed as a metastable phase by releasing pressure from the high pressure Cmcm phase. The obtained structural, electronic and optical results are compared with previous calculations and available experimental data. Overall good agreement is found.  相似文献   

6.
In this work by applying first principles calculations structural, electronic and optical properties of Ca3Bi2 compound in hexagonal and cubic phases are studied within the framework of the density functional theory using the full potential linearized augmented plane wave (FP-LAPW) approach. According to our study band gap for Ca3Bi2 in hexagonal phase are 0.47, 0.96 and 1?eV within the PBE-GGA, EV-GGA and mBJ-GGA, respectively. The corresponding values for cubic phase are 1.24, 2.08 and 2.14?eV, respectively. The effects of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths and anti-symmetry gap are investigated. It is found that the hydrostatic pressure increases the band widths of all bands below the Fermi energy while it decreases the band gap and the anti-symmetry gap. In our calculations, the dielectric tensor is derived within the random phase approximation (RPA). The first absorption peak in imaginary part of dielectric function for both phases is located in the energy range 2.0–2.5?eV which are beneficial to practical applications in optoelectronic devices in the visible spectral range. For instance, hexagonal phase of Ca3Bi2 with a band gap around 1?eV can be applied for photovoltaic application and cubic phase with a band gap of 2?eV can be used for water splitting application. Moreover, we found the optical spectra of hexagonal phase are anisotropic along E||x and E||z.  相似文献   

7.
李雪梅  韩会磊  何光普 《物理学报》2011,60(8):87104-087104
采用基于密度泛函理论的平面波赝势方法,在局域密度近似下采用线性响应的密度泛函微扰理论计算了LiNH2的晶格动力学、介电性质和热力学性质,得到了布里渊区高对称方向上的声子色散曲线和相应的声子态密度,分析了 LiNH2的红外和拉曼活性声子频率,同时给出它的介电张量和玻恩有效电荷张量. 研究表明,LiNH2存在小的各向异性,计算所得结果与实验值和其他理论值符合较好.最后,利用得到的声子态密度进一步预测了LiNH2的热力学性质 关键词: 密度泛函理论 晶格动力学 热力学性质 第一性原理计算  相似文献   

8.
Electronic and optical properties of Sr(Ti,Zr)O3 crystals in the cubic (Pm-3m) and tetragonal (I4/mcm) phase were calculated by the first-principles calculations using the density functional theory and the local density approximation. The band structure of cubic and tetragonal phases show an indirect band gap at (R-Γ) point and at (M-Γ) point in the Brillouin zone, respectively. The linear photon-energy dependent dielectric functions and some optical properties such as the absorption coefficient, energy-loss function and reflectivity are calculated for both phases. The optical properties of tetragonal phase of Sr(Ti,Zr)O3 were investigated by theoretical methods for the first time. We have also made some comparisons with the available related experimental and theoretical data.  相似文献   

9.
In the present work, the atomic and the electronic structures of Au3N, AuN and AuN2 are investigated using first-principles density-functional theory (DFT). We studied cohesive energy vs. volume data for a wide range of possible structures of these nitrides. Obtained data were fitted to a Birch-Murnaghan third-order equation of state (EOS) so as to identify the most likely candidates for the true crystal structure in this subset of the infinite parameter space, and to determine their equilibrium structural parameters. The analysis of the electronic properties was achieved by the calculations of the band structure and the total and partial density of states (DOS). Some possible pressure-induced structural phase transitions have been pointed out. Further, we carried out GW0 calculations within the random-phase approximation (RPA) to the dielectric tensor to investigate the optical spectra of the experimentally suggested modification: Au3N(D09). Obtained results are compared with experiment and with some available previous calculations.  相似文献   

10.
We have studied structural, electronic, elastic and dynamical properties of NiSi2 by employing the plane wave pseudopotential method based on density functional theory within the local density approximation. The calculated lattice constant, bulk modulus and first-order pressure derivative of the bulk modulus are reported and compared with earlier available experimental and theoretical calculations. Numerical first-principles calculations of the elastic constants were used to calculate C11, C12 and C44 for NiSi2. The calculated electronic band structure has been compared with angle-resolved photoemission spectroscopy experimental data along the [100] and [111] symmetry directions. A linear response approach to density functional theory is used to derive the phonon dispersion curves and phonon partial density of states. Atomic displacement patterns for NiSi2 at the Γ, X and L symmetry points are also presented.  相似文献   

11.
Jing Chang  NiNa Ge  Ke Liu 《哲学杂志》2013,93(25):2182-2195
Abstract

A theoretical investigations on the structural stability and mechanical properties of Be3N2 crystallising in α and β phases was performed using first-principles calculations based on density functional theory. The obtained ground state structure and mechanical properties are in excellent agreement with the available experimental and theoretical data. A full elastic tensor and crystal anisotropy of Be3N2 in two phases are determined in the wide pressure range. Results indicated that the two phases of Be3N2 are mechanically stable and strongly pressure dependent in the range of pressure from 0 to 80 GPa. The superior mechanical properties show that the two phases of Be3N2 are potential candidate structures to be the hard material. And the α-Be3N2 has better mechanical properties than β-Be3N2. By the calculated B/G ratio, it is predicted that both phases are intrinsically brittleness and strongly prone to ductility when the pressure is above 65.6 and 68.5 GPa, respectively. Additionally, the pressure-induced elastic anisotropy analysis indicates that the elastically anisotropic of Be3N2 in both phases is strengthening with increasing pressure, and strongly dependent on the propagation direction.  相似文献   

12.
We report results of first-principles calculations for the electronic and optical properties under pressure effect of Li2O, Na2O, Ki2O and Rb2O compounds in the cubic antifluorite structure, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals (FP-APW+lo) method based on density functional theory, within the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the alternative form of GGA proposed by Engel and Vosko (GGA-EV) is also used for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, and pressure coefficients of the fundamental energy gap are given. The critical point structure of the frequency dependent complex dielectric function is also calculated and analyzed to identify the optical transitions. The pressure dependence of the static optical dielectric constant is also investigated.  相似文献   

13.
14.
The electronic, structural properties and optical properties of the rutile TiO2 have been reported using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. We employed the generalized gradient approximation (GGA), which is based on exchange-correlation energy optimization to calculate the total energy. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Our results including lattice parameter, bulk modulus, density of states, the reflectivity spectra, the refractive index and band gap are compared with the experimental data. We present calculations of the frequency-dependent complex dielectric function ε(ω) and its zero-frequency limit ε1(0).  相似文献   

15.
The demand for cheaper, nontoxic and earth-abundant materials as absorbing layer for solar cell is immensely needed to replace scarce, toxic and expensive one. In this regard, chalcogenide materials have considerably attracted the attention of a lot of researchers because of showing a great potential for different applications. Stibnite (Sb2S3), a chalcogenide binary material is considerably investigated for exploiting its potential for different energy technologies being a less toxic, abundantly available, stable and efficient, which are the fundamentals for sustainability as well as to realize the dream of green energy. In this study, theoretical calculations of the structural, electronic and optical properties of stibnite (Sb2S3) crystal structure are presented using the full potential (FP) linearized augmented plane wave (LAPW) framed within density functional theory (DFT). To incorporate the exchange-correlation part in the total energy functional, besides the local density approximation (LDA), Wu-Cohen parameterized generalized gradient approximation (WC-GGA), Perdew–Burke–Ernzerhof parameterized generalized gradient approximation (PBE-GGA), and Perdew–Burke–Ernzerhof generalized gradient approximation for solids and surfaces (PBEsol-GGA) are used for the calculations of the structural parameters, where the Trans-Blaha approach of the modified Becke–Johnson (TB-mBJ) potential is used to get more reliable results for the fundamental band gap energy value. These calculations are performed by involving spin-orbit coupling (SOC) contribution. Additionally, optical properties, such as imaginary and real parts of the dielectric function, optical conductivity, absorption coefficient, refractive index, reflectivity, and electron energy loss function are analyzed. Our first-principles calculations show that Wu-Cohen GGA (WC-GGA) reproduces results for lattice parameters comparable to the experimental measurements. The obtained results of the band gap energy and optical properties with TB-mBJ potential are also closer to the experimental data and, endorse its potentiality for the photovoltaics applications.  相似文献   

16.
First principles calculations have been performed within the framework of density functional theory to investigate the structural, electronic and optical properties of all four possible B1, B2, B3 and B4 phases of CaS. Apart from the standard local density approximation (LDA) and GGA (PBE), a more accurate nonempirical density functional generalized gradient approximation (GGA), as proposed by Wu and Cohen [Phys. Rev. B 73, 235116 (2006)] for the exchange-correlation energy, EXC, has been attempted in these calculations. Calculated electronic structure and the density of states are analyzed in terms of the contribution of Ca d states and S s and p states in determining the nature of the fundamental band gap in various phases. Reflectivity, R (ω), the real and imaginary part of the dielectric functions, ε(ω), have been calculated for all the phases and the results have been discussed and compared with the existing experimental data.  相似文献   

17.
Density functional calculations are performed to study the structural, electronic and optical properties of technologically important BxGa1−xAs ternary alloys. The calculations are based on the total-energy calculations within the full-potential augmented plane-wave (FP-LAPW) method. For exchange-correlation potential, local density approximation (LDA) and the generalized gradient approximation (GGA) have been used. The structural properties, including lattice constants, bulk modulus and their pressure derivatives, are in very good agreement with the available experimental and theoretical data. The electronic band structure, density of states for the binary compounds and their ternary alloys are given. The dielectric function and the refractive index are also calculated using different models. The obtained results compare very well with previous calculations and experimental measurements.  相似文献   

18.
BC5 is a newly synthesized superhard material. We present a systematic investigation of optical properties of BC5 in P3m1 and I-4m2 phases at ambient and high pressure in the framework of density functional theory with the generalized gradient approximation (GGA) in this paper. Optical properties such as dielectric function, refractive index, absorption, reflectivity and electron energy-loss spectrum are obtained successfully. The feature in the spectra of the optical parameters is discussed. Through calculation, we find BC5 is optically anisotropic. Moreover, the dielectric function exhibits a large change at 70 GPa pressure for P3m1 BC5 phase, but I-4m2 phase not, indicating the stable electronic structure that the I-4m2 phase possesses.  相似文献   

19.
In this work, the electronic and linear optical properties of pure and fully hydrogenated SiC and GeC nanosheets have been studied using the full potential linearized augmented plane wave method within the density functional theory. Our study on SiC and GeC has confirmed their potential applications in electronic devices. The dielectric tensor is derived within the random phase approximation. The dielectric function, reflectivity, energy loss function and refraction index of these nanosheets for parallel (E||X) and perpendicular (E||Z) electric field polarization directions are well described. It is observed that hydrogenated nanosheets have semiconductor behavior with anisotropic optical spectra for both E||X and E||Z polarization direction. Also, hydrogenated nanosheets provide new electronic transitions between their neighboring atoms.  相似文献   

20.
A normal coordinates analysis for the M(NH3)2+ 4 complex ions in Td symmetry (M = Zn, Cd, Co) and in D4h symmetry (M = Cu, Pd, Pt) has been undertaken on the basis of a General Valence Force Field (GVFF), using simplified molecular models. Throughout the course of the present work, we have relaxed the point mass approximation for the NH3-ligands in order to investigate, on a quantitative basis, some relevant ligand - framework coupling vibrations. The simplest molecular model able to accomplish this purpose is to treat the ammino group, in a linear ligator approximation. We show that these model calculations provide a satisfactory set of vibrational frequencies as well as consistent sets of force constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号