首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energetic ions have been obtained irradiating a tungsten target with a Q-switched Nd:Yag laser, 1064?nm wavelength, 9?ns pulse width, 900?mJ maximum pulse energy and power density of the order of 1010?W/cm2. The laser-target interaction induces a strong metal etching with production of plasma in front of the target. The plasma contains neutrals and ions with high charge state. Time-of-flight measurements are presented for qualitative analysis of the ion production. A cylindrical electrostatic ion analyzer permits measuring of the yield of emitted ions, the charge state of detected ions and the ion energy distribution. Measurements indicate that, at a laser fluence of the order of 100?J/cm2, the charge state may reach 9+ and the ion energy reaches about 5?keV. The ion energy distribution is given as a function of the charge state. Experimental results indicate that an electrical field is developed along the normal to the plane of the target surface, which accelerates the ions up to high velocity. The ion velocity distributions follow a “shifted Maxwellian distribution”, which the author has corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

2.
The growth rate of Bragg gratings written using 193-nm light from an ArF excimer laser is shown to be non-linear with the pulse energy density for Er3+ co-doped Al silica. This yields a refractive-index increase up to a few 10−3. We then use phase-shift interferometry to measure the sample surface topography following exposure. Subsequently, we formulate an inhomogeneous stress model to analyse the observed change of volume within the core material. Below pulse energies of 550 mJ/cm2, the results show that refractive-index changes are primarily due to a densification process. At higher pulse energies material re-expansion occurs.  相似文献   

3.
Laser annealing experiments were performed in order to increase the concentration of electrically active manganese in the layers of A3B5: Mn semiconductors. An LPX-200 KrF excimer laser with a wavelength of 248 nm and a pulse duration of ~30 ns was used. It is shown experimentally that at a pulse energy of an excimer laser of >230 mJ/cm2, the hole concentration in GaAs: Mn layers increases to 3 × 1020 cm–3. The negative magnetoresistance and the anomalous Hall effect with a hysteresis loop for annealed GaAs: Mn samples remain the same up to 80–100 K. Similar changes are observed for InAs: Mn layers as a result of laser annealing.  相似文献   

4.
We present atomic, energy, and charge spectra of ions accelerated at the front surface of a silicon target irradiated by a high-contrast femtosecond laser pulse with an intensity of 3×1016 W/cm2, which is delayed with respect to a cleaning nanosecond laser pulse of 3-J/cm2 energy density. A tremendous increase in the number of fast silicon ions and a significant growth of their maximum charge in the case of the cleaned target from 5+ to 12+ have been observed. The main specific features of the atomic, energy, and charge spectra have been analyzed by means of one-dimensional hydrodynamic transient-ionization modeling. It is shown that fast highly charged silicon ions emerge from the hot plasma layer with a density a few times less than the solid one, and their charge distribution is not deteriorated during plasma expansion.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

5.
It is found that the mean charge of tungsten ions in a solid tungsten target cleaned from the surface layer of hydrocarbon and oxide compounds and exposed to femtosecond laser radiation with an intensity exceeding 1016 W/cm2 attains 22+, while the maximum charge is 29+. The maximum energy of such ions approaches 1 MeV. The corresponding values obtained on a dirty target with the same laser pulse parameters constitute 3+, 5+, and 150 keV. The results of numerical simulation show that such a large maximum charge of ions can be attained owing to the emergence of an electrostatic ambipolar field at the sharp boundary between the plasma and vacuum. The main mechanism of ionization of ions with maximum charges is apparently impact ionization in the presence of an external quasi-static field. In addition, direct above-threshold ionization by this field can also play a significant role. It is also shown that heavy ions in a clean target are accelerated by hot electrons. This leads to the formation of high-energy ions. The effect of recombination on the charge of the ions being detected is analyzed in detail.  相似文献   

6.
We fabricate a transparent glass ceramic contains magnesium-aluminum spinel nanocrystallites doped with Co2+ ions. The ground-state and excited-state absorption cross section of this glass ceramic at 1.54 μm are estimated to be (2.8 ± 0.3) × 10−19 cm2 and (4.8 ± 0.5) × 10−20 cm2, respectively. For the first time, the passively Q-swithched operation of LD pumped 1.54 μm microchip Yb3+/Er3+ glass laser is realized with transparent glass ceramic as saturable absorber. The Q-switched pulses of 3.846 kHz in repetition rate, 6.2 ns in duration and 6.3 μJ in energy are obtained. At last, the dependences of pulse width and repetition rate on pump power are also investigated.  相似文献   

7.
CdWO4 crystals grown by the Czochralski method at the low-temperature gradient were investigated with electron spin resonance (ESR) spectroscopy. ESR spectra did not contain the spectra of impurity ions typical for the CdWO4 structure, i.e., Fe3+, Mn2+, and Cr3+. At the same time, in the studied crystals a complex ESR spectrum having the hyperfine structure due to two nonequivalent tungsten atoms was observed (W183;I=1/2; natural abundance, 14.28%). Angular dependence analysis and simulation of ESR spectra have shown that this novel spectrum is described by a spin-Hamiltonian with the following parameters:D=839 G,E=80 G,g xx=2.01,g yy=1.97,g zz=1.987 and electron spinS=7/2. There is one magnetically nonequivalent position of the center in the crystal structure and the direction ofD zz andg zz corresponds to the direction of Wn-Wn+2 (or Cdn-Cdn+2) in the crystal structure. Because of the fact that it is in principle impossible to achieve the electron stateS=7/2 for the d-shell of one transition metal ion and taking into account the fact that such electron state is realized for two nonequivalent tungsten atoms, we suppose the defect structure to be the chain W2+-M+-W3+. In the structure of this defect the ion M+ is diamagnetic, the ions W2+ and W3+ have electron spinS=2 andS=3/2, respectively. The necessary condition for such defect to exist is to place this chain of ions in cadmium positions for the charge compensation. the reason for such defects to form is supposed to be the incorporation of M+ ions into the CdWO4 lattice. The presence of W2+ and W3+ in Cd positions in the defect structure provides the charge compensation and the lowering of the lattice stress.  相似文献   

8.
Nd3+:NaY(WO4)2, known as Nd:NYW, is a new type crystal. By using laser-diode as pump source, a passive Q-switching of intracavity-frequency-doubling Nd:NYW/KTP laser has been realized with Cr4+:YAG saturable absorber. The dependence of pulse repetition rate, pulse energy, pulse width, and peak power on incident pump power for different small-signal transmissions of Cr4+:YAG are measured. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.  相似文献   

9.
We report on the spectroscopy and, for the first time to our knowledge, continuous-wave and Q-switched diode-pumped laser operation of Er,Yb:YVO4 crystal. Absorption and emission spectra of the crystal were determined. Lifetimes of Er3+ 4 I 13/2 and 4 I 11/2 levels that define laser performance of the crystal were measured and parameters of energy transfer between Yb3+ and Er3+ ions were estimated. cw output power of 115 mW with slope efficiency of 5.4% was achieved at 1604 nm. In the Q-switched mode an average output power of 81 mW with slope efficiency of 3.5% and pulse duration of 150 ns was obtained. In quasi-cw regime maximal peak power of 610 mW with slope efficiency of 6.7% was demonstrated. PACS 42.55.Xi; 42.60.Gd; 42.70.Hj  相似文献   

10.
Time-of-flight mass spectroscopy methods are employed for studying processes occurring during capture of electrons by 3He2+ and Ar6+ multiply charged ions with energy 6z keV (z is the ion charge) from C2H n molecules (n = 2, 4, 6) with different multiplicities of C-C bonds. Fragmentation schemes of the molecular ions formed in such processes are established from analysis of correlations of recording times for all fragment ions. The absolute values of the cross sections of capture of an electron and capture with ionization are measured, as well as the cross sections of formation of fragment ions in these processes. The absolute values of total capture cross sections for several electrons are determined.  相似文献   

11.
Data on the cross sections for single-electron charge exchange and excitation in collisions of He+ ions with C5+, N6+, and O7+ ions in the He+ ion energy range of 0.2–3.0 MeV are obtained for the first time. The cross sections for the single-electron charge transfer into the singlet and triplet 1snl states of C4+, N5+, and O6+ (2≤n≤5) ions and for the 1s → 2p 0, ±1 electronic excitation of He+(1s) ions are calculated. The calculations were performed by solving close-coupling equations on the basis of ten two-electron quasi-molecular states.  相似文献   

12.
Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+?=?0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+?=?1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.  相似文献   

13.
Luminescence regularities have been studied in new erbium/ytterbium materials based on glasses and glass ceramics of a magnesium-aluminosilicate system containing nanoscale erbium/ytterbium zirconate titanate crystals with the pyrochlore structure. Lifetimes of Yb3+ and Er3+ ions in the 2 F5/2 state and in the 4I11/2 and 4I13/2 states, respectively, and the efficiency of Yb3+ → Er3+ energy transfer have been evaluated. The identified spectral-luminescent characteristics of the studied glasses and glass ceramics co-doped with erbium and ytterbium ions show that these materials are promising media for producing laser generation in the spectral range around 1.5 μm.  相似文献   

14.
Fullerenes are a direct link between atoms with discrete electronic energy levels and solids with a band structure and a well-defined surface. In this paper, we report on a quantum mechanical treatment of charge transfer and ionization in the ion-ion collision system 3He2+ + C 60 + . This approach considers under- and over-barrier transitions through the one-dimensional barrier between the collision partners. The calculated cross sections for charge transfer compare favorably with experimental data measured in the center-of-mass energy range from 27 to 196 keV employing the crossed beams technique.  相似文献   

15.
J. Ma  Y. Zhai  D. Li  C. Fang  D. Liu 《Laser Physics》2011,21(4):680-683
By simultaneously using both a V3+:YAG and a Co2+:LaMgAl11O19 saturable absorber in the cavity, for the first time to our knowledge, a diode-pumped doubly Q-switched Nd:GdVO4 laser has been realized. The dependence of pulse width, pulse repetition rate, pulse energy and peak power on the incident pump power are measured. Under the absorbed pump power of 8.59 W, both the pulse temporal profile of the passive double-switching with the pulse width of 25.29 ns, and the passive single-switching just using V3+:YAG with pulse width of 30.46 ns are obtained. The pulse duration is partly compressed in contrast to the purely passively Q-switched laser with V3+:YAG.  相似文献   

16.
This paper describes results of spectroscopic investigation of laser-produced tungsten plasma. The laser intensity on the target surface reached up to 30 GW/cm2 depending on the focusing conditions. Optical spectra emitted from plasma plumes which were formed under vacuum conditions in front of the tungsten target due to the interaction of Nd-YAG laser pulses (1.06 μm, 0.5 J), were characterised by means of an optical spectrometer (λ/Δλ= 900) in the wavelength range from 300 to 1100 nm. The spectra were recorded automatically with the use of a CCD detector with exposition time varied from 100 ns to 50 ms. On the basis of WI and WII lines it was possible to estimate electron temperature and electron density which corresponded to the expansion phase of the plasma. Te and Ne were measured as 1.1 eV and 8×1016 cm-3, respectively. The spectra collected by the ion energy analyser showed that the plasma included tungsten ions up to 6+ ion charge. Signals from the ion collector allowed to estimate the average value of ion energy of tungsten as 4.6 keV. Basing on this value the electron temperature corresponding to the initial stage of the plasma formation was estimated to be about 320 eV. Optical microscope investigation showed that laser irradiation caused structural changes on the surface of the target.  相似文献   

17.
A miniature tunable TEA CO2 laser using isotope 13C16O2 as the active medium is developed to extend the spectral range of CO2 lasers for further application. The optimization of the energy parameters of the tunable TEA 13C16O2 laser and the same laser using 12C16O2 are studied. When a gas mixture (13C16O2: N2: He = 1: 1: 3) at a total pressure of 6.4 × 104 Pa is used, the TEA 13C16O2 laser of a 45-cm3 active volume obtains 51 emission lines in the [0001–1000] and [0001–0200] bands. The maximum pulse energy of the TEA 13C16O2 laser is about 357 mJ. The same laser using the conventional gas mixture (12C16O2: N2: He = 1: 1: 3) at a pressure of 6.66 × 104 Pa is measured to obtain 69 laser emission lines and the maximum pulse energy of laser radiation is about 409 mJ.  相似文献   

18.
The parameters of fast particles generated upon the interaction of 1019 W/cm2 laser pulses with solid targets are studied. The spatial and energy parameters of fast ions are investigated. It is found that approximately 1–3% of the laser energy is transformed to the energy of mega-and submegaelectronvolt ions at laser pulse intensities ≥1018 W/cm2. It is shown experimentally that an ion beam is directed perpendicular to the target surface. The analytic and numerical simulations agree with experimental results and predict the propagation of fast electrons in the mirror direction with respect to the incident laser beam and of ions perpendicular to the target. The theoretical calculations are compared with the experimental output and spectra of fast electrons and ions.  相似文献   

19.
Single-crystal Al2O3 substrates are implanted with 64Zn+ ions using doses of 5 × 1016 cm–2 and an energy of 100 keV. The samples are annealed in oxygen with a stepwise increase in temperature from 400 to 1000°C. The changes on the surface and in the bulk of the sample are analyzed via scanning electron microscopy, energy-dispersive analysis, transmission electron microscopy, and Auger electron spectroscopy.  相似文献   

20.
The energy flux of phonons produced due to the nonradiative laser-induced transitions of Ho3+ impurity ions in forsterite from the 5F5 states has been measured using a superconductor bolometer at a temperature of 2 K. The dependence of the flux on the laser wavelength, the time elapsed after the action of a laser pulse, and the phonon propagation path length is analyzed. It is found that the excitation of Ho3+ to some states leads to the diffusive propagation of emitted phonons in the spontaneous frequency decay mode (quasidiffusive mode of propagation): the time of arrival of a phonon pulse is almost a linear function of the path length, but it is several times longer than the longest ballistic time of flight (for transverse phonons). The diffusion coefficient and the nonradiative relaxation time are determined from the best fit to the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号