首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cu(I)-catalysed azide-alkyne cycloaddition reactions were used to functionalise lanthanide(III)-complexes (Ln; La, Eu and Tb) incorporating alkyne or azide reactive groups. Microwave irradiation significantly accelerated the reactions, enabling full conversion to the triazole products in some cases in 5 min. Alkyl and aryl azides and alkyl and aryl alkynes could all serve as coupling partners. These reaction conditions proved efficient for cyclen-tricarboxylates and previously unreactive cyclen-tris-primary amide chelates. The synthesis of heterobimetallic (Eu/Tb, EuTb17 and Eu/La, EuLa17) and heterotrimetallic (Eu/La/Eu) complexes was achieved in up to 60% isolated yield starting from coumarin 2-appended alkynyl complexes Tb16 or La16 and an azido-Eu complex Eu4, and bis-alkynyl La-complex La5 and Eu4, respectively. EuTb17 displayed dual Eu(III) and Tb(III)-emission upon antenna-centred excitation.  相似文献   

2.
This article highlights some of the recent developments in the use of responsive cyclen based lanthanide luminescent devices, focusing on Eu(III), Tb(III), Nd(III) and Yb(III) complexes, where the photophysical properties, such as the excited state lifetimes, quantum yield/intensity and emission polarisation are modulated by the local chemical environment, e.g. ions and molecules, or through self-assembly of either f-f or mixed f-d cyclen complexes.  相似文献   

3.
The synthesis of four lanthanide ion complexes Eu?1, Eu?2, Tb?1 and Tb?2, from the heptadentate tri-arm cyclen (1,4,7,10-tetraazacyclododecane) ligands 1 and 2 that were made in one-pot syntheses is described. These coordinatively unsaturated complexes have two labile metal-bound water molecules, as demonstrated by X-ray crystallography. This was also confirmed by evaluating their hydration state (q~2) by measuring their lifetimes in D2O and H2O, respectively. The above complexes were all designed as being “photophysically silent” prior to the recognition of the anion, since they do not possess antenna that can participate in sensitisation of the Eu(III) or the Tb(III) excited state. However, the two water molecules can be displaced upon anion binding by the appropriate aromatic carboxylates to give ternary complexes in water, through either four- or six-member ring chelates (q~0), or possibly via a monodentate binding. In the case of Tb?1 and Tb?2, large luminescence enhancements were observed upon the formation of such ternary complexes with N,N-dimethylaminobenzoic acid at ambient pH. Such binding and luminescent enhancements were also observed for Tb?1 in the presence of salicylic acid. On all occasions, the anion recognition “switched” the emission “on” over two logarithmic units. At higher concentrations, the emission is reduced possibly due to quenching. In the case of aspirin, the binding was too weak to be measured, indicating that Tb?1 selectively detects salicylic acid, the active form of aspirin in water. In the case of Eu?1 and Eu?2, the affinity of these complexes towards such aromatic carboxylates was too weak for efficient ternary complex formation.  相似文献   

4.
Highly luminescent tris[β-diketonate (HFA, 1,1,1,5,5,5-hexafluoropentane-2,4-dione)] europium(III) complexes containing a chiral bis(oxazolinyl) pyridine (pybox) ligand--[(Eu(III)(R)-Ph-pybox)(HFA)(3)], [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)], and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)])--exhibit strong circularly polarized luminescence (CPL) at the magnetic-dipole ((5)D(0) → (7)F(1)) transition, where the [(Eu(III)(R)-Ph-pybox)(HFA)(3)] complexes show virtually opposite CPL spectra as compared to those with the same chirality of [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)]. Similarly, the [(Tb(III)(R)-Ph-pybox)(HFA)(3)] complexes were found to exhibit CPL signals almost opposite to those of [(Tb(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Tb(III)(R)-Me-Ph-pybox)(HFA)(3)] complexes with the same pybox chirality. Single-crystal X-ray structural analysis revealed ligand-ligand interactions between the pybox ligand and the HFA ligand in each lanthanide(III) complex: π-π stacking interactions in the Eu(III) and Tb(III) complexes with the Ph-pybox ligand, CH/F interactions in those with the i-Pr-pybox ligand, and CH/π interactions in those with the Me-Ph-pybox ligand. The ligand-ligand interactions between the achiral HFA ligands and the chiral pybox results in an asymmetric arrangement of three HFA ligands around the metal center. The metal center geometry varies depending on the types of ligand-ligand interaction.  相似文献   

5.
The enantiomers of N,N'-bis(1-phenylethyl)-2,6-pyridinedicarboxamide (L), namely, (R,R)-1, and (S,S)-1, react with Ln(III) ions to give stable [LnL(3)](3+) complexes in an anhydrous acetonitrile solution and in the solid state, as evidenced by electrospray ionization mass spectrometry, NMR, luminescence titrations, and their X-ray crystal structures, respectively. All [LnL(3)](3+) complexes [Ln(III) = Eu, Gd, Tb, and Yb; L = (R,R)-1 and (S,S)-1] are isostructural and crystallize in the cubic space group I23. Although the small quantum yields of the Ln(III)-centered luminescence clearly point to the poor efficiency of the luminescence sensitization by the ligand and the intersystem crossing and ligand-to-metal energy transfers, the ligand triplet-excited-state energy seems relatively well suited to sensitize many Ln(III) ion's emission for instance, in the visible (Eu and Tb), near-IR (Nd and Yb), or both regions (Pr, Sm, Dy, Er, and Tm).  相似文献   

6.
The self-assembly of dinuclear triple helical lanthanide ion complexes (helicates), in aqueous solution, is investigated utilizing laser-induced, lanthanide luminescence spectroscopy. A series of dinuclear lanthanide (III) helicates (Ln(III)) based on 2,6-pyridinedicarboxylic acid (dipicolinic acid, dpa) coordinating units was synthesized by linking two dpa moieties using the organic diamines (1R,2R)-diaminocyclohexane (chxn-R,R) and 4,4'-diaminodiphenylmethane (dpm). Luminescence excitation spectroscopy of the Eu3+ 7F0-->5D0 transition shows the apparent cooperative formation of neutral triple helical complexes in aqueous solution, with a [Eu2L3] stoichiometry. Eu3+ excitation peak wavelengths and excited-state lifetimes correspond to those of the [Eu(dpa)3]3- model complex. CD studies of the Nd(III) helicate Nd2(dpa-chxn-R,R)3 reveal optical activity of the f-f transitions, indicating that the chiral linking group induces a stable chirality at the metal ion center. Molecular mechanics calculations using CHARMm suggest that the delta delta configuration at the Nd3+ ion centers is induced by the chxn-R,R linker. Stability constants were determined for both ligands with Eu3+, yielding identical results: log K = 31.6 +/- 0.2 (K in units of M-4). Metal-metal distances calculated from Eu3+-->Nd3+ energy-transfer experiments show that the complexes have metal-metal distances close to those calculated by molecular modeling. The fine structure in the Tb3+ emission bands is consistent with the approximate D3 symmetry as anticipated for helicates.  相似文献   

7.
The synthesis of a new ligand (1) containing a single phenanthroline (phen) chromophore and a flexibly connected diethylenetriamine tetracarboxylic acid unit (DTTA) as a lanthanide (Ln) coordination site is reported [1 is 4-[(9-methyl-1,10-phenantrol-2-yl)methyl]-1,4,7-triazaheptane-1,1,7,7-tetraacetic acid]. From 1, an extended series of water-soluble Ln.1 complexes was obtained, where Ln is Eu(III), Tb(III), Gd(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), and Er(III). The stoichiometry for the association was found 1:1, with an association constant K(A) > or = 10(7) s(-1) as determined by employing luminescence spectroscopy. The luminescence and photophysical properties of the series of lanthanide complexes were investigated in both H2O and D2O solutions. High efficiencies for the sensitized emission, phi(se), in air-equilibrated water were observed for the Ln.1 complexes of Eu(III) and Tb(III) in the visible region (phi(se) = 0.24 and 0.15, respectively) and of Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), and Er(III) in the vis and/or near-infrared region [phi(se) = 2.5 x 10(-3), 5 x 10(-4), 3 x 10(-5), 2 x 10(-5), 2 x 10(-4), 4 x 10(-5), and (in D2O) 4 x 10(-5), respectively]. For Eu.1 and Tb.1, luminescence data for water and deuterated water allowed us to estimate that no solvent molecules (q) are bound to the ion centers (q = 0). Luminescence quenching by oxygen was investigated in selected cases.  相似文献   

8.
The synthesis of four bis-macrocyclic conjugates made from the coupling of either diaza-15-crown-5 ethers (1 and 3) and diaza-18-crown-6 ethers (2 and 4) to either amide or carboxylate functionalized cyclen (1,4,7,10-tetraazacyclododecane), and their corresponding cationic Tb(III) complexes, Tb-1, Tb-2, and neutral complexes Tb-3 and Tb-4 are described. The effect on the ground, singlet excited states and the Tb(III) emission, was investigated either as a function of pH or the concentration of several Group I and II cations, upon excitation at 300 nm. The ground state and singlet excited states of the Tb(III) complexes were found to be modulated by ions such as H+, Na+ or K+, signifying the recognition of these ions by the crown ether receptors. In acidic media, below pH 4, the Tb(III) emission was highly pH sensitive, gradually increasing with large orders of magnitude of luminescence enhancements. For Tb-1 and Tb-2 complexes, the Tb(III) emission was also "switched on" in alkaline media above pH 8. At pH 7.4, the recognition of Na+ or K+ also gave rise to a significant change in the Tb(III) emission due to the modulation of the antenna-receptor moieties by these ions. For Tb-1 and Tb-3 the largest changes were seen for Na+, whereas for Tb-2 and Tb-4 the largest changes were seen for K+.  相似文献   

9.
Absorption, emission, and excitation spectra for solid-state and solution of Tb(III), Dy(III), and Gd(III) complexes with the polypyridine ligand 6,6'-bis[bis(2-pyridylmethyl)-aminomethyl]-2,2'-bipyridine (C36H34N8) are presented. Measurements of excited-state lifetimes and quantum yields in various solvents at room temperature and 77 K are also reported and used to characterize the excited-state energetics of this system. Special attention is given to the characterization of metal-to-ligand energy transfer efficiency and mechanisms. The measurement of circularly polarized luminescence (CPL) from the solution of the Dy(III) complex following circularly polarized excitation confirms the chiral structure of the complexes under study. No CPL is present in the luminescence from the Eu(III) or Tb(III) complex because of efficient racemization. The variation of the magnitude of the CPL as a function of temperature from an aqueous solution of DyL is used for the first time to characterize the solution equilibria between different chiral species.  相似文献   

10.
刘兴旺  王娜  高赛生态  高俊芳 《有机化学》2009,29(10):1676-1681
合成了一个新的β-二酮配体1-(2-噻吩基)-3-(对苯乙炔基苯基)-1,3-丙二酮(HTPP), 并用HTPP、邻菲罗啉(phen) 分别与Eu(III)和Tb(III)反应, 生成了两个新的三元稀土配合物Eu(TPP)3phen和Tb(TPP)3phen, 用红外光谱、化学分析、元素分析及热重分析对它们的组成和结构进行了表征. 室温下, 在紫外光激发下Eu(III)和Tb(III)的配合物表现出中心离子的特征荧光发射, 发现β-二酮配体对配合物的荧光有较大影响, 通过量子化学计算从理论上对实验结果进行了解释.  相似文献   

11.
Three new solid lanthanide(III) complexes, [Ln(1-AMUH)3] · (NO3)3 (1-AMUH = 1-amidino-O-methylurea; Ln = Eu(III), Gd(III), or Tb(III)) were synthesised and characterised by elemental analysis, infrared spectra, magnetic moment measurement, and electron paramagnetic resonance (EPR) spectra for Gd(III) complex. The formation of lanthanide(III) complexes is confirmed by the spectroscopic studies. The photophysical properties of Gd(III), Eu(III), and Tb(III) complexes in solid state were investigated. The Tb(III) complex exhibits the strongest green emission at 543 nm and the Eu(III) complex shows a red emission at 615 nm while the Gd(III) complex shows a weak emission band at 303 nm. Under excitation with UV light, these complexes exhibited an emission characteristic of central metal ions. The powder EPR spectrum of the Gd(III) complex at 300 K exhibits a single broad band with g = 2.025. The bi-exponential nature of the decay lifetime curve is observed in the Eu(III) and Tb(III) complexes. The results reveal them to have potential as luminescent materials.  相似文献   

12.
The design and synthesis of several bis-macrocyclic cyclen (1,4,7,10-tetraazacyclododecane) ligands and their corresponding lanthanum or europium complexes is described; these dinuclear lanthanide systems were made by connecting two macrocyclic cyclen moieties through a rigid, covalent, p-xylylenediamide bridge or a flexible aliphatic hexane bridge. These ligands were subsequently functionalised with six acetamide pendant arms (CONR1R2: R1 = R2 = H or CH3, or R1 = H, R2 = CH3). The corresponding lanthanide bis-complexes were then formed by reaction with La(III) and Eu(III) triflates, yielding overall cationic (+VI charged) complexes.  相似文献   

13.
The Eu(III) tetraazamacrocyclic complexes [Eu.1] and [Eu.2], and the Tb(III) and Yb(III) complexes [Tb.1] and [Yb.2], have been synthesized as luminescent molecular-level devices. The Eu complexes exhibit unique dual pH switching behavior in water under ambient conditions. The delayed Eu emission is reversibly switched on in acid, with an enhancement factor of several hundred for [Eu.1]. These observations are consistent with the protonation of the quinoline aryl nitrogen moiety (pK(a) approximately equal to 5.9 for [Eu.1]). The fluorescence emission spectra of these complexes are unaffected by acid, but pronounced changes occur in alkaline solution due to the deprotonation of the aryl amide nitrogen (pK(a) approximately 9.4 for [Eu.1]). [Tb.1] shows a more intriguing pH dependence; Tb emission is switched "on" only in the presence of H+ and in the absence of molecular oxygen, whereas the fluorescence emission properties are similar to those observed with [Eu.1]. This behavior can be conveniently described as a molecular-level logic gate, corresponding to a two-input INHIBIT function, A wedge B'. The analogous [Yb.2] complex shows no such pH or O(2) dependence.  相似文献   

14.
Circularly polarized luminescence (CPL) of chiral Eu(III) complexes with nona- and octa-coordinated structures, [Eu(R/S-iPr-Pybox)(D-facam)(3)] (1-R/1-S; R/S-iPr-Pybox, 2,6-bis(4R/4S-isopropyl-2-oxazolin-2-yl)pyridine; D-facam, 3-trifluoroacetyl-d-camphor), [Eu(S,S-Me-Ph-Pybox)(D-facam)(3)] (2-SS; S,S-Me-Ph-Pybox, 2,6-bis(4S-methyl-5S-phenyl-2-oxazolin-2-yl)pyridine), and [Eu(Phen)(D-facam)(3)] (3; Phen, 1,10-phenanthroline) are reported, and their structural features are discussed on the basis of X-ray crystallographic analyses. These chiral Eu(III) complexes showed relatively intense photoluminescence due to their (5)D(0) → (7)F(1) (magnetic-dipole) and (5)D(0) → (7)F(2) (electric-dipole) transition. The dissymmetry factors of CPL (g(CPL)) at the former band of 1-R and 1-S were as large as -1.0 and -0.8, respectively, while the g(CPL) of 3 at the (5)D(0) → (7)F(1) transition was relatively small (g(CPL) = -0.46). X-ray crystallographic data indicated specific ligand-ligand hydrogen bonding in these compounds which was expected to stabilize their chiral structures even in solution phase. CPL properties of 1-R and 1-S were discussed in terms of transition nature of lanthanide luminescence.  相似文献   

15.
The template condensation of (R)-2,2′-diamino-1,1′-binaphthyl and 2,6-diformylpyridine in the presence of lanthanide(III) nitrates was used to obtain new Pr(III), Nd(III), Sm(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III) and Yb(III) complexes of the chiral hexaaza Schiff base macrocycle L. The complexes have been characterised on the basis of ESI MS spectrometry, NMR spectroscopy and elemental analyses. The X-ray crystal structure of Eu(III) complex reveals highly twisted helical conformation of the macrocycle L. The 10-coordinate Eu(III) ion is coordinated by all six nitrogen atoms of the macrocycle and two additional bidentate nitrate anions. Emission and excitation spectra as well as luminescence decay time measurements (at 295 and 77 K) were used to characterize the photophysical properties of the Eu(III), Gd(III) and Yb(III) complexes in the solid-state. Energy transfer from ligand to the Eu(III) and Yb(III) ions has been demonstrated and thermally activated back energy transfer processes have been analyzed.  相似文献   

16.
This paper reports on the synthesis and relaxivity properties of tetraacetic DOTA-type chelating agents featuring one or two alkyne groups directly grafted on the tetraaza macrocyclic ring and available for "click" reactions with azide-bearing substrates. The racemic DOTAma ligand bearing one alkyne group was obtained by a bisaminal template route. The same approach was used to prepare ligand DOTAda substituted by two alkyne groups located on two adjacent carbon atoms. The S,S enantiomer of DOTAda was also prepared by a "crab-like" condensation. This ligand is the first example of a DOTA derivative featuring two reactive functions adjacent to each other on the macrocyclic ring. A triacetic monoalkyne ligand (DO3ma) was also synthesized for comparison purposes. NMR studies indicate that the Yb(III) chelates of DOTAma and DOTAda adopt two conformations in solutions in which the tetraaza ring is rigidified. The hydration state of the Eu(III) chelates was determined by luminescence spectroscopy, and the water exchange time of the Gd(III) complexes was measured by (17)O NMR. Ring substitution accelerates the water exchange. These data were used to interpret nuclear magnetic relaxation dispersion curves of the Gd(III) chelates. Two long aliphatic chains have been added to DOTAda by a "click" procedure to form the (C18)(2)DOTAda ligand. The corresponding Gd(III) complex forms micelles of unusually high relaxivity presumably because of the close proximity of the aliphatic chains on the macrocyclic ring that ensures a rigid double anchoring into the micelles.  相似文献   

17.
The pinene-bipyridine carboxylic derivatives (+)- and (-)-HL, designed to form configurationally stable lanthanide complexes, proved their effectiveness as chiral building blocks for the synthesis of lanthanide-containing superstructures. Indeed a self-assembly process takes place with complete diastereoselectivity between the enantiomerically pure ligand L(-) and Ln(III) ions (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er), thus leading to the quantitative formation of a trinuclear supramolecular architecture with the general formula [Ln(3)(L)(6)(mu(3)-OH)(H(2)O)(3)](ClO(4))(2) (abbreviated as tris(Ln[L](2))). This class of C(3)-symmetrical compounds was structurally characterized in the solid state and solution. Electrospray (ES) mass spectrometric and (1)H NMR spectroscopic analyses indicated that the trinuclear species are maintained in solution (CH(2)Cl(2)) and are stable in the investigated concentration range (10(-2)-10(-6) m). The photophysical properties of the ligand HL and its tris(Ln[L](2)) complexes were studied at room temperature and 77 K, thus demonstrating that the metal-centered luminescence is well sensitized both for the visible and near-IR emitters. The chiroptical properties of tris(Ln[L](2)) complexes were investigated by means of circular dichroism (CD) and circularly polarized luminescence (CPL). A high CD activity is displayed in the region of pi-pi* transitions of bipyridine. CPL spectra of tris(Eu[(+)-L](2)) and tris(Tb[(+)-L](2)) present large dissymmetry factors g(em) for the sensitive transitions of Eu(III) ((5)D(0)-->(7)F(1), g(em)=-0.088) and Tb(III) ((5)D(4)-->(7)F(5), g(em)=-0.0806). The self-recognition capabilities of the system were tested in the presence of artificial enantiomeric mixtures of the ligand. (1)H NMR spectra identical to those of the enantiomerically pure complexes and investigations by CD spectroscopic analysis reveal an almost complete chiral self-recognition in the self-assembly process, thus leading to mixtures of homochiral trinuclear structures.  相似文献   

18.
The reaction of Mo2(SCH2CH2S)2Cp2 (1; Cp=eta-C5H5) with an excess of an alkyne in refluxing dichloromethane affords the bis(dithiolene) complexes Mo2(micro-SCR1=CR2S)2Cp2 (2a, R1=R2=CO2Me; 2b, R1=R2=Ph; 2c, R1=H, R2=CO2Me) whereas with 1 equiv of alkyne at room temperature the mixed dithiolene-dithiolate species Mo2(micro-SCR1=CR2S)(micro-SCH2CH2S)Cp2 (3a, R1=R2=CO2Me; 3b, R1=R2=Ph) are formed. The remaining dithiolate ligand in 3 can then be converted into a different dithiolene by reaction with a second alkyne. Applying this methodology, we have used bis(diphenylphosphino)acetylene to prepare the first examples of complexes containing phosphine-substituted dithiolene ligands: Mo2{micro-SC(CO2Me)=C(CO2Me)S}{micro-SC(PPh2)=C(PPh2)S}Cp2 (2g) and Mo2{micro-SC(PPh2)=C(PPh2)S}2Cp2 (2h). Tri- and tetrametallic complexes can then be assembled by coordination of these diphosphines to CpRuCl units by reaction with CpRu(PPh3)2Cl. Electrochemical studies of the Ru(II)/Ru(III) couple in Mo2{micro-SC(PPh2)=C(PPh2)S}2Cp2(RuClCp)2 (4b) reveals that the two separate ruthenium centers are oxidized electrochemically at different potentials, demonstrating communication between them through the dimolybdenum bis(dithiolene) core. Density functional theory calculations were carried out to explore the electronic structures of these species and to predict and assign their electronic spectra.  相似文献   

19.
(Z)-4-(4-Methoxyphenoxy)-4-oxobut-2-enoic acid and its solid rare earth complexes LnL3.2H2O (Ln=La, Eu, Tb) were synthesized and characterized by means of MS, elemental analysis, FTIR, 13C NMR and TG-DTA. The IR and 13C NMR results show that the carboxylic groups in the complexes coordinated to the rare earth ions in the form of a bidentate ligand, but the ester carboxylic groups have not taken part in the coordination. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were also studied. The strong luminescence emitting peaks at 616nm for Eu(III) and 547nm for Tb(III) can be observed, which could be attributed to the ligand has an enhanced effect to the luminescence intensity of the Eu and Tb.  相似文献   

20.
Three novel ligands containing pyridine-2,6-dicarboxylic acid unit, trans-4 -(4'-methoxystyryl) pyridine-2,6-dicarboxylic acid, trans-4-(4'-(dimethylamino)styryl)pyridine-2,6-dicarboxylic acid, and trans-4-(4'-(diphenylamino)styryl)pyridine-2,6-dicarboxylic acid were synthesized and their complexes with Eu(III), Tb(III) ions were successfully prepared. The ligands and the corresponding metal complexes were characterized by means of MS, elemental analysis, IR, (1)H NMR and TG-DTA. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were studied. The strong luminescence emitting peaks at 615 nm for Eu(III) and 545 nm for Tb(III) can be observed. The applications in cell imaging of the europium and terbium complexes were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号