首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-naphthol (NpOH) upon ultrafast photoexcitation is the motive of the present study. Herein, the detailed kinetics of the ESPT reaction of NpOH in water clusters formed in hydrophobic solvent are investigated. Distinct values of time constants associated with proton transfer and solvent relaxation have been achieved through picosecond-resolved fluorescence measurements. We have also used a model solvation probe Coumarin 500 (C500) to investigate the dynamics of solvation in the same environmental condition. The temperature dependent picosecond-resolved measurement of ESPT of NpOH and the dynamics of solvation from C500 identify the magnitude of intermolecular hydrogen bonding energy in the water cluster associated with the ultrafast ESPT process.  相似文献   

2.
Ultrafast relaxation dynamics of the excited singlet (S(1)) state of Michler's ketone (MK) has been investigated in different kinds of solvents using a time-resolved absorption spectroscopic technique with 120 fs time resolution. This technique reveals that conversion of the locally excited (LE) state to the twisted intramolecular charge transfer (TICT) state because of twisting of the N,N-dimethylanilino groups with respect to the central carbonyl group is the major relaxation process responsible for the multi-exponential and probe-wavelength-dependent transient absorption dynamics of the S1 state of MK, but solvation dynamics does not have a significant role in this process. Theoretical optimization of the ground-state geometry of MK shows that the dimethylanilino groups attached to the central carbonyl group are at a dihedral angle of about 51 degrees with respect to each other because of steric interaction between the phenyl rings. Following photoexcitation of MK to its S1 state, two kinds of twisting motions have been resolved. Immediately after photoexcitation, an ultrafast "anti-twisting" motion of the dimethylanilino groups brings back the pretwisted molecule to a near-planar geometry with high mesomeric interaction and intramolecular charge transfer (ICT) character. This motion is observed in all kinds of solvents. Additionally, in solvents of large polarity, the dimethylamino groups undergo further twisting to about 90 degrees with respect to the phenyl ring, to which it is attached, leading to the conversion of the ICT state to the TICT state. Similar characteristics of the absorption spectra of the TICT state and the anion radical of MK establish the nearly pure electron transfer (ET) character of the TICT state. In aprotic solvents, because of the steep slope of the potential energy surface near the Franck-Condon (FC) or LE state region, the LE state is nearly nonemissive at room temperature and fluorescence emission is observed from only the ICT and TICT states. Alternatively, in protic solvents, because of an intermolecular hydrogen-bonding interaction between MK and the solvent, the LE region is more flat and stimulated emission from this state is also observed. However, a stronger hydrogen-bonding interaction between the TICT state and the solvent as well as the closeness between the two potential energy surfaces due to the TICT and the ground states cause the nonradiative coupling between these states to be very effective and, hence, cause the TICT state to be weakly emissive. The multi-exponentiality and strong wavelength-dependence of the kinetics of the relaxation process taking place in the S1 state of MK have arisen for several reasons, such as strong overlapping of transient absorption and stimulated emission spectra of the LE, ICT, and TICT states, which are formed consecutively following photoexcitation of the molecule, as well as the fact that different probe wavelengths monitor different regions of the potential energy surface representing the twisting motion of the excited molecule.  相似文献   

3.
Ab initio complete active space self-consistent field (CASSCF) calculations combined with polarized continuum model (PCM) have been performed to examine the charge transfer (CT) state formation of trans-4-dimethylamino,4'-cyanostilbene (DCS) in a solvent. In a polar solvent, the globally stable geometry in S1 takes a twisted conformation where the electron-donating dimethylanilino group is highly twisted against the other part of the electron-withdrawing 4-cyanostyryl group. In addition, skeletal relaxation where the aromatic benzene rings turn to be a nonaromatic quinoid structure is essential to stabilize the CT state. In a nonpolar solvent, the stable geometry in S1 takes a nontwisted conformation, though the skeletal relaxation is also an essential factor. By means of the free energy decomposition analysis, it is found that the stable CT geometry which depends on solvent polarity mainly comes from two factors: the linkage bond between the dimethylanilino and the 4-cyanostyryl group and the electrostatic interaction. In a polar solvent, the linkage bond has a single bond character to slightly prevent the torsional motion. This twist geometrically assists the charge separation so as to reinforce the electrostatic interaction. In consequence, the twisted internal CT (TICT) conformation is stable. In a nonpolar solvent, on the other hand, a nontwisted CT state is stable because the linkage bonds greatly increase a double bond character so as to prevent the torsional motion, while the electrostatic interaction is not so enhanced even by the geometrical twist.  相似文献   

4.
The dynamics of the excited-state proton transfer (ESPT) in a cluster of 2-(2'-hydroxyphenyl)benzothiazole (HBT) and hydrogen-bonded water molecules was investigated by means of quantum chemical simulations. Two different enol ground-state structures of HBT interacting with the water cluster were chosen as initial structures for the excited-state dynamics: (i) an intramolecular hydrogen-bonded structure of HBT and (ii) a cluster where the intramolecular hydrogen bond in HBT is broken by intermolecular interactions with water molecules. On-the-fly dynamics simulations using time-dependent density functional theory show that after photoexcitation to the S(1) state the ESPT pathway leading to the keto form strongly depends on the initial ground state structure of the HBT-water cluster. In the intramolecular hydrogen-bonded structures direct excited-state proton transfer is observed within 18 fs, which is a factor two faster than proton transfer in HBT computed for the gas phase. Intermolecular bonded HBT complexes show a complex pattern of excited-state proton transfer involving several distinct mechanisms. In the main process the tautomerization proceeds via a triple proton transfer through the water network with an average proton transfer time of approximately 120 fs. Due to the lack of the stabilizing hydrogen bond, intermolecular hydrogen-bonded structures have a significant degree of interring twisting already in the ground state. During the excited state dynamics, the twist tends to quickly increase indicating that internal conversion to the electronic ground state should take place at the sub-picosecond scale.  相似文献   

5.
Contemporary progress regarding guest/host types of excited‐state double proton transfer has been reviewed, among which are the biprotonic transfer within doubly H‐bonded host/guest complexes, the transfer through a solvent bridge relay, the intramolecular double proton transfer and solvation dynamics coupled proton transfer. Of particular emphases are the photophysical and photochemical properties of excited‐state double proton transfer (ESDPT) in 7‐azaindole and its corresponding analogues. From the chemical aspect, two types of ESDPT reaction, namely the catalytic and non‐catalytic types of ESDPT, have been classified and reviewed separately. For the case of static host/guest hydrogen‐bonded complexes both hydrogen‐bonding strength and configuration (i.e. geometry) play key roles in accounting for the reaction dynamics. In addition to the dynamical concern, excited‐state thermodynamics are of importance to fine‐tune the proton transfer reaction in the non‐catalytic host/guest type of ESDPT. The mechanisms of protic solvent assisted ESDPT, depending on host molecules and proton‐transfer models, have been reviewed where the plausible resolution is deduced. Particular attention has been given to the excited‐state proton transfer dynamics in pure water, aiming at its future perspective in biological applications. Finally, the differentiation in mechanism between solvent diffusive reorganization and solvent relaxation to affect the host/guest ESPT dynamics is made and discussed in de tail.  相似文献   

6.
Fluorescence spectroscopy and femtosecond relaxation dynamics of 2-{[2-(2-hydroxyphenyl)benzo[d]oxazol-6-yl]methylene}malononitrile (diCN-HBO) and 2-{[2-(2-hydroxyphenyl)benzo[d]thiazol-6-yl]methylene}malononitrile (diCN-HBT) are studied to probe the excited-state proton transfer (ESPT) coupled charge transfer (ESCT) reaction. Unlike most of the ESPT/ESCT systems previously designed, in which ESCT takes place prior to ESPT, both diCN-HBO and diCN-HBT undergo ESPT, concomitantly accompanied with the charge transfer process, such that the ESPT reaction dynamics are directly coupled with solvent polarization effects. The long-range solvent polarization interactions result in a solvent-induced barrier that affects the overall proton transfer reaction rate. In cyclohexane, the rate constant of ESPT of diCN-HBO is measured to be 1.1 ps (9.1 x 10(11) s(-1)), which is apparently slower than that of 150 fs for the parent molecule 2-(2'-hydroxyphenyl)benzoxazole (HBO). Upon increasing solvent polarity to, for example, CH 3CN, the rate of ESPT is increased to 300 fs (3.3 x 10(12) s(-1)). The results are rationalized by the stabilization of proton transfer tautomer, which possesses a large degree of charge transfer character via an increase of the solvent polarity, such that the corresponding solvent-induced barrier is reduced. We thus demonstrate a prototypical system in which the photon-induced nuclear motion (proton transfer) is directly coupled with solvent polarization and the corresponding mechanism is reminiscent of that applied in an electron transfer process.  相似文献   

7.
Excitation of a molecule from the ground state to an electronically excited state can cause changes in its geometry, dipole moment, acidity or basicity, redox potentials and solvation. Bimolecular quenching of the excited state of the probe by other molecules present in the medium can be used to determine the mobilities of molecules and estimate microviscosities and encounter probabilities in the medium. Differences in excited state acidity or basicity relative to the ground state can be employed to investigate the dynamics of ultrafast proton transfer reactions. Three areas of current interest where fluorescent probes have served to elucidate important dynamic processes of molecules in simple self-aggregating surfactant systems such as aqueous micelles and reverse micelles are considered: (a) bimolecular quenching of excited states; (b) the dynamics of solvation of excited states and (c) ultrafast intermolecular excited state proton transfer (ESPT) reactions.  相似文献   

8.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

9.
The lower singlet excited states for dimethylaminobenzophenone have been investigated as a function of the twisting motion with inclusion of solvent effects. Theoretical calculations have been performed using time-dependent density functional theory. The B3LYP and MPW1PW91 functionals with a 6-311+G(2d,p) basis set have been used to compute transition energies. The solvent effects have been described within the polarizable continuum model. Ground-state geometries are optimized using density functional theory with both B3LYP and MPW1PW91 functionals combined with 6-31G(d) basis sets. Vertical absorption energy calculations characterize the lower singlet excited states both in vacuum and in different kinds of solvents. A large redshift of the absorption maximum in the polar solvent suggests an intramolecular charge transfer character of the excited state. We have constructed the potential energy curves of two possible twisting motions of the excited states both in vacuum and in the polar solvent of acetonitrile: the twisting of only the dimethylamino group and the twisting of the dimethylaminophenyl group with respect to the benzoyl group. Both twisting processes predict the formation of the twisted intramolecular charge transfer state associated with the crossing of a low barrier. The presence of the polar solvent significantly changes the shape of the energy curves. Calculated emission energies for both the isolated and the solvated systems show a large Stokes shift between the absorption and fluorescence maxima. Two possible twisting motions produce similar fluorescence spectroscopic consequences. Our results including solvent effects explain the weak "dual-fluorescence" feature of dimethylaminobenzophenone, and imply that the two possible twisting motions may occur in the excited-state relaxation dynamics, but the twisting of the dimethylamino group seems to take place easier.  相似文献   

10.
The effect of micellar environment on the excited state proton transfer (ESPT) of 2-(2'-pyridyl)benzimidazole (2PBI) has been investigated by steady state and time resolved fluorescence spectroscopy. The ESPT, which occurs to a rather small extent at pH 7, is found to be enhanced remarkably at the interface of sodium dodecyl sulfate (SDS) micelles and water. Such an enhancement is not observed for the cationic cetyl trimethyl ammonium bromide (CTAB) or neutral Triton X-100 micelles. This selective enhancement is explained in the light of a modification of pK(a) and a more acidic local pH in the micelle-water interface. A rise time of about 890 ps is observed in the region of tautomer emission. The origin of this rise time is explored, considering three factors, namely, diffusion controlled protonation of the normal form of 2PBI, slow and possibly incomplete solvation of the transition state, leading to a slowing down of the proton transfer process and a similar slow dynamics of the tautomeric excited state.  相似文献   

11.
The effect of the microenvironment of a Nafion membrane on the excited-state proton transfer (ESPT) of 2-(2'-pyridyl)benzimidazole (2PBI) has been investigated by steady-state and time-resolved fluorescence spectroscopy. The mechanism of the ESPT is found to depend remarkably on the water content of the membrane. In the protonated form of the membrane, ESPT is found to involve the dicationic (D) form of the fluorophore, whereas in cation-exchanged membranes, it is found to involve the monocation (C). The change in the mechanism and extent of ESPT in cation-exchanged membranes can be explained by considering dehydration of the membrane as well as the less acidic environment around the 2PBI molecules. The slow dynamics is found to result from two factors, namely, slow and incomplete solvation of the transition state, leading to a slowing down of the proton-transfer process, and a slow solvation of the polar tautomeric excited state.  相似文献   

12.
13.
The electronic ground and excited-state structures of the betaine dye molecule pyridinium- N-phenoxide [4-(1-pyridinio)phenolate] are investigated both in the gas phase and in aqueous solution, using the reference interaction site model self-consistent-field (RISM-SCF) procedure within a CASSCF framework. We obtain the total free energy profiles in both the ground and excited states with respect to variation in the torsion angle between the phenoxide and pyridinium rings. We analyze the effect of solvent on the variation of the solute dipole moment and on the charge transfer character in the excited state. In the gas phase, it is shown that the potential energy profile in the excited-state decreases monotonically toward a perpendicular ring orientation and the dipole moment decreases along with decreasing charge localization. In water, the free energy surface for twisting is better characterized as nearly flat along the same coordinate for sterically accessible angles. These results are analyzed in terms of contributions of the solvation free energy, the solute electronic energy, and their coupling. Correspondingly, the dependence of the charge transfer character on solute geometry and solvation are analyzed, and the important roles in the excitation and subsequent relaxation processes for the betaine dye are discussed. It is found that there is considerable solute electronic reorganization associated with the evolution of solvation in the excited state, and it is suggested that this reorganization may contribute significantly to the early time evolution of transient spectra following photoexcitation.  相似文献   

14.
Excited-state potential energy surface (PES) characterization is carried out at the CASSCF and MRSDCI levels, followed by ab initio dynamics simulation of excited-state intramolecular proton transfer (ESIPT) on the S2(pipi*) state in malonaldehyde. The proton-transfer transition state lies close to an S2/S1 conical intersection, leading to substantial coupling of proton transfer with electronic relaxation. Proton exchange proceeds freely on S2, but its duration is limited by competition with twisting out of the molecular plane. This rotamerization pathway leads to an intersection of the three lowest singlet states, providing the first detailed report of ab initio dynamics around a three-state intersection (3SI). There is a significant energy barrier to ESIPT on S1, and further pyramidalization of the twisted structure leads to the minimal energy S1/S0 intersection and energetic terminal point of excited-state dynamics. Kinetics and additional mechanistic details of these pathways are discussed. Significant depletion of the spectroscopic state and recovery of the ground state is seen within the first 250 fs after photoexcitation.  相似文献   

15.
The dynamics of the excited states of 1-(p-nitrophenyl)-2-(hydroxymethyl)pyrrolidine (p-NPP) has been investigated using the subpicosecond transient absorption spectroscopic technique in different kinds of solvents. Following photoexcitation using 400 nm light, conformational relaxation via twisting of the nitro group, internal conversion (IC) and the intersystem crossing (ISC) processes have been established to be the three major relaxation pathways responsible for the ultrafast deactivation of the excited singlet (S(1)) state. Although the nitro-twisting process has been observed in all kinds of solvents, the relative probability of the occurrence of the other two processes has been found to be extremely sensitive to solvent polarity, because of alteration of the relative energies of the S(1) and the triplet (T(n)) states. In the solvents of lower polarity, the ISC is predominant over the IC process, because of near isoenergeticity of the S(1)(ππ*) and T(3)(nπ*) states. On the other hand, in the solvents of very large polarity, the energy of the S(1)(ππ*) state becomes lower than those of both the T(3)(nπ*) and T(2)(nπ*/ππ*) states, but those of the T(1)(ππ*) state and the IC process to the ground electronic (S(0)) state are predominant over the ISC, and hence the triplet yield is nearly negligible. However, in the solvents of medium polarity, the S(1) and T(2) states become isoenergetic and the deactivation of the S(1) state is directed to both the IC and ISC channels. In the solvents of low and medium polarity, following the ISC process, the excited states undergo IC, vibrational relaxation, and solvation in the triplet manifold. On the other hand, following the IC process in the Franck-Condon region of the S(0) state, the vibrationally hot molecules with the twisted nitro group subsequently undergo the reverse nitro-twisting process via dissipation of the excess vibrational energy to the solvent or vibrational cooling.  相似文献   

16.
Ab initio calculations have been performed to examine the photochemical behavior of 4-(dimethylamino)benzenzonitrile (DMABN). The conical intersection between S2 and S1 (S2/S1-CIX), where the internal conversion takes place after the main transition of S0-S2 at the equilibrium geometry in S0, is characterized by a dimethylamino-twisted quinoid structure where aromaticity of the benzene ring is lost. The optimized geometry of the charge transfer (CT) state in S1 has a feature similar to that of S2/S1-CIX but is not energetically stabilized so much. Consequently, electronically excited DMABN with CT character relaxes into the most stable locally excited (LE) state in S1 through a recrossing at S2/S1-CIX in gas phase or nonpolar solvent. In polar solvent, in contrast, the equilibration between LE and CT takes place in S1 so that the CT state is more stable because of electrostatic interaction. The excited states of DMABN derivatives have been also examined. On the basis of the present computational results, a new and simple guiding principle of the emission properties is proposed, where conventional twisted intramolecular CT (TICT) and planar intramolecular CT (PICT) models are properly incorporated.  相似文献   

17.
TDDFT, RI-CC2, and CIS calculations have been performed for the nondissociative excited-state proton transfer (ESPT) in the S1 state of 7-hydroxy-4-methylcoumarin (7H4MC) along a H-bonded water wire of three water molecules bridging the proton donor (OH) and the proton acceptor (C[double bond]O) groups (7H4MC.(H2O)3). The observed structural reorganization in the water-wire cluster is interpreted as a proton-transfer (PT) reaction along the H2O solvent wire. The shift of electron density within the organic chromophore 7H4MC due to the optical excitation appears to be the driving force for ESPT. All the methods used show that the reaction path occurs in the 1pipi* state, and no crossing with a Rydberg-type 1pisigma* state is found. TDDFT and RI-CC2 calculations predict an exoergic reaction of the excited-state enol-to-keto transformation. The S1 potential energy curve reveals well-defined Cs minima of enol- and keto-clusters, separated by a single barrier with a height of 17-20 kcal/mol. After surmounting this barrier, spontaneous PT along the water wire is observed, leading without any further barrier to the keto structure. The TDDFT and RI-CC2 methods appear to be reliable approaches to describe the energy surfaces of ESPT. The CIS method predicts an endoergic ESPT reaction and an energy barrier, which is too high.  相似文献   

18.
Detailed simulation study is reported for the excited-state dynamics of photoisomerization of cis-tetraphenylethylene (TPE) following excitation by a femtosecond laser pulse. The technique for this investigation is semiclassical dynamics simulation, which is described briefly in the paper. Upon photoexcitation by a femtosecond laser pulse, the stretching motion of the ethylenic bond of TPE is initially excited, leading to a significant lengthening of ethylenic bond in 300 fs. Twisting motion about the ethylenic bond is activated by the energy released from the relaxation of the stretching mode. The 90 degrees twisting about the ethylenic bond from an approximately planar geometry to nearly a perpendicular conformation in the electronically excited state is completed in 600 fs. The torsional dynamics of phenyl rings which is temporally lagging behind occurs at about 5 ps. Finally, the twisted TPE reverts to the initial conformation along the twisting coordinate through nonadiabatic transitions. The simulation results provide a basis for understanding several spectroscopic observations at molecular levels, including ultrafast dynamic Stokes shift, multicomponent fluorescence, viscosity dependence of the fluorescence lifetime, and radiationless decay from electronically excited state to the ground state along the isomerization coordinate.  相似文献   

19.
20.
Differently substituted anils (Schiff bases) and their boranil counterparts lacking the proton‐transfer functionality have been studied using stationary and femtosecond time‐resolved absorption, fluorescence, and IR techniques, combined with quantum mechanical modelling. Dual fluorescence observed in anils was attributed to excited state intramolecular proton transfer. The rate of this process varies upon changing solvent polarity. In the nitro‐substituted anil, proton translocation is accompanied by intramolecular electron transfer coupled with twisting of the nitrophenyl group. The same type of structure is responsible for the emission of the corresponding boranil. A general model was proposed to explain different photophysical responses to different substitution patterns in anils and boranils. It is based on the analysis of changes in the lengths of CN and CC bonds linking the phenyl moieties. The model allows predicting the contributions of different channels that involve torsional dynamics to excited state depopulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号