首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adam J  Pribil R 《Talanta》1972,19(10):1105-1111
Chloroform solution of phenylacetic add has been found very suitable for extraction and colorimetric determination of copper. Iron and uranium are the main interferences, which can be overcome by masking with ammonium fluoridc. Under these conditions, only gold(III), platinum(IV) and palladium(II) are co-extracted, but their colour does not interfere with measurement of the green copper extract at 700 nm. The method has been applied to the determination of copper in iron, steels, uranium, lead concentrates and alloys containing nickel, cobalt, etc. The extraction procedure can also be used to remove interference of iron, copper and uranium in the determination of manganese with formaldoxime.  相似文献   

2.
The determination was studied of Al, B, Be, Cd, Ca, Co, Cu, Mg, Mn, Mo, Pb, Si, Sn, V, Cr, Ni, and Fe as trace level impurities in uranium compounds by ICP-AES after extraction of uranium with three different mixtures of di-(2-ethyl-hexyl) phosphate (D2EHP) and tri-(2-ethyl-hexyl)-phosphate (T2EHP) in solvents like toluene, carbon tetrachloride, hexane and cyclohexane. The study was carried out in presence of different concentrations of HCl and HNO(3). A single extraction with D2EHP in cyclohexane using nitric acid as matrix was sufficient to reduce the U(3)O(8) concentration from 100 g/l to 100 microg/ml. The ICP-AES instrumentation applied, allowed the determination of metal concentrations ten-times lower than those usually found in nuclear grade U(3)O(8). To check the efficiency of the extraction and the accuracy of the proposed method, Certified Reference Materials were used in the dissolution and extraction steps. The method described can be used for the determination of trace metals in nuclear grade U(3)O(8).  相似文献   

3.
The determination was studied of Al, B, Be, Cd, Ca, Co, Cu, Mg, Mn, Mo, Pb, Si, Sn, V, Cr, Ni, and Fe as trace level impurities in uranium compounds by ICP-AES after extraction of uranium with three different mixtures of di-(2-ethyl-hexyl) phosphate (D2EHP) and tri-(2-ethyl-hexyl)-phosphate (T2EHP) in solvents like toluene, carbon tetrachloride, hexane and cyclohexane. The study was carried out in presence of different concentrations of HCl and HNO3. A single extraction with D2EHP in cyclohexane using nitric acid as matrix was sufficient to reduce the U3O8 concentration from 100 g/l to 100 g/ml. The ICP-AES instrumentation applied, allowed the determination of metal concentrations ten-times lower than those usually found in nuclear grade U3O8. To check the efficiency of the extraction and the accuracy of the proposed method, Certified Reference Materials were used in the dissolution and extraction steps. The method described can be used for the determination of trace metals in nuclear grade U3O8.  相似文献   

4.
A novel method for the selective electromembrane extraction (EME) of U6+ prior to fluorometric determination has been proposed. The effect of extraction conditions including supported liquid membrane (SLM) composition, extraction time and extraction voltage were investigated. An SLM composition of 1% di-2-ethyl hexyl phosphonic acid in nitrophenyl octyl ether (NPOE) showed good selectivity, recovery and enrichment factor. The best performance was achieved at an extraction potential of 80 volts and an extraction time of 14 minutes Under the optimized conditions, a linear range from 1 to 1000 ng mL−1 and LOD of 0.1 ng mL−1 were obtained for the determination of U6+. The EME method showed good performance in sample cleanup and the reduction of the interfering effects of Mn2+, Zn2+, Cd2+, Ni2+, Fe3+, Co2+, Cu2+, Cl and PO43− ions during fluorometric determination of uranium in real water samples. The recoveries above 54% and enrichment factors above 64.7 were obtained by the proposed method for real sample analysis.  相似文献   

5.
6.
Summary Uranium(VI) can be extracted as its 8-quinolinolate into acetonitrile by means of salting-out with ammonium and sodium acetates, respectively; the metal oxinates extracted give a well-defined dc polarogram with E 1/2=–0.80V and a sharp square wave (sw) polarogram with E p=–0.96V in the extract. The dc wave height and the sw peak current are directly proportional to the uranium(VI) concentration in the range of 6.0×10–6 to 4.0×10–4M at pH 6.7–10.0 and 8.0×10–7 to 2.8×10–5M at pH 10.5–11.0, respectively. A number of ions do not interfere in the presence of EDTA.
Polarographische Bestimmung von Uran(VI) nach Aussalz-Extraktion als 8-Hydroxychinolat mit Acetonitril
Zusammenfassung Uran(VI) kann durch Aussalzen mit Ammonium- bzw. Natriumacetat als Oxinat mit Acetonitril extrahiert werden. Das extrahierte Oxinat ergibt ein gut ausgebildetes Gleichstrompolarogramm mit E 1/2=–0,80 V bzw. ein scharfes square-wave-Polarogramm mit E p=–0,96 V. Die Gleichstrom-Stufenhöhe bzw. der square-wave-Peakstrom sind der U(VI)-Konzentration im Bereich 6,0·10–6-4,0· 10–4M (pH 6,7–10,0) bzw. 8,0·10–7-2,8·10 –5M (pH 10,5–11,0) direkt proportional. Durch Zusatz von EDTA kann eine Reihe von Störungen ausgeschaltet werden.
  相似文献   

7.
Peng  Haiyue  Li  Feize  Zeng  Yang  Li  Min  Liao  Jiali  Lan  Tu  Yang  Yuanyou  Yang  Jijun  Liu  Ning 《Journal of Radioanalytical and Nuclear Chemistry》2021,329(1):289-300
Journal of Radioanalytical and Nuclear Chemistry - A supramolecular organic material MA-IPA containing melamine and isophthalic acid was prepared by low-temperature hydrothermal reaction, with an...  相似文献   

8.
Energy dispersive X-Ray fluorescence (EDXRFS) method is developed and standardized for the determination of uranium on routine basis in various process stream solutions, covering a vide range of concentrations from 0.1 to 400?g?L?1, from an Uranium Extraction Plant at Nuclear Fuel Complex. The method has been applied to aqueous stream samples. Except for dilution, no much sample preparation was involved in the analysis and accordingly the experimental parameters were optimized. The calibration curve in the range of 0.1?C10?g?L?1 of U was drawn manually using synthetic standard solutions prepared from U3O8 powder and L?? (13.61?keV) line of uranium was used for the measurements. The results from EDXRFS method are compared with other methods and are found to be in good agreement. The EDXRFS measurements carried over a range of 0.1?C350?g?L?1 of uranium have shown a RSD of ±1?C5%. Also, the limitations of reported methods in literature and the advantages of present method are highlighted in the paper.  相似文献   

9.
A novel analytical technique able to determine the anti-ischemic drug trapidil in human serum and urine is proposed. In order to achieve satisfactory sensitivity and selectivity, an extraction procedure was required to isolate the drug from complex matrixes such as serum and urine. A solid-phase extraction procedure was investigated to both increase the analyte concentration and eliminate the interfering molecules present in large amounts in both matrixes. Optimization of the extraction step was realized by selecting a new polymeric sorbent based on a surface-modified styrene–divinylbenzene polymer which provided fast and efficient drug extraction. Drug quantification was performed by using the third-order derivative spectra of the SPE eluates. Absorbance specific signals at 3D335,316 and 3D316 nm for urine and serum, respectively, were demonstrated to be directly proportional to drug concentration and barely affected by residual matrix interferences. Under the optimized experimental conditions the calibration plots were linear over the concentration range 0.2–50 μg mL−1. The method was validated by analysis of a series of spiked samples. Accuracy (recovery of 95 and 94% for serum and urine, respectively) and precision (RSD below 4%) were good. Figure Assay of Trapidil in biological fluids by SPE and derivative spectrophotometry  相似文献   

10.
A method for quantitative determination of uranium in phosphoric acid and wet phosphoric acid has been developed. After reduction with Fe, uranium(IV) is extracted with a kerosene solution of octylphenylphosphoric acid. The uranium was stripped with 10M H3PO4, containing H2O2, and then determined spectrophotometrically with Arsenazo III and by direct uranium(IV)-phosphoric acid solution measurements.  相似文献   

11.
12.
A method is described for the determination of uranium by fluorimetry and spectrophotometry in samples of natural non-saline waters. After acidification with hydrochloric acid, the water sample is filtered and, following the addition of ascorbic acid and potassium thiocyanate, passed through a column of the strongly basic anion-exchange resin Dowex 1-X8 (thiocyanate form). On this exchanger uranium is adsorbed as an anionic thiocyanate complex. After removal of iron and other coadsorbed elements by washing first with a mixture consisting of 50 vol.% tetrahydrofuran, 40 vol.% methyl glycol and 10 vol.% 6 M hydrochloric acid, and then with pure aqueous 6 M hydrochloric acid, the uranium is eluted with 1 M hydrochloric acid. In the eluate, uranium is determined fluorimetrically or by means of the spectrophotometric arsenazo III method. The procedure was used for the routine determination of uranium in water samples collected in Austria.  相似文献   

13.
A new solid-phase extraction adsorbent was prepared by employing a two-step "grafting from" approach to anchor a multidentate N-donor ligand, 5-azacytosine onto hydrothermal carbon (HTC) microspheres for highly selective separation of U(VI) from multi-ion system. Fourier-transform infrared and X-ray photoelectron spectroscopies were used to analyze the chemical structure and properties of resultant HTC-based materials. The adsorption behavior of U(VI) onto the adsorbent was investigated as functions of pH, contact time, ionic strength, temperature, and initial U(VI) concentration using batch adsorption experiments. The U(VI) adsorption was of pH dependent. The adsorption achieved equilibrium within 30min and followed a pseudo-second-order equation. The adsorption amount of U(VI) increased with raising the temperature from 283.15 to 333.15K. Remarkably, high ionic strength up to 5.0molL(-1) NaNO(3) had only slight effect on the adsorption. The maximum U(VI) adsorption capacity reached 408.36mgg(-1) at 333.15K and pH 4.5. Results from batch experiments in a simulated nuclear industrial effluent, containing 13 co-existing cations including uranyl ion, showed a high adsorption capacity and selectivity of the adsorbent for uranium (0.63mmolUg(-1), accounting for about 67% of the total adsorption amount).  相似文献   

14.
Nan Z  Yao XZ  Gu YX  Yu RQ 《Talanta》1990,37(10):1021-1024
A selective titrimetric determination of Pb after separation by a modified method of precipitation as its sulphate is proposed. Pb(II), present as the perchlorate, is precipitated by gentle boiling in 3.6M H(2)SO(4) presaturated with PbSO(4) and free from any extraneous anions. The customary time-consuming evaporation to fumes of sulphuric acid is dispensed with. The precipitate is collected, and dissolved in excess of HEDTA, the surplus of which is back-titrated with Zn(II) at pH 5.0-5.5. Use of Catechol Violet and Xylenol Orange as a mixed indicator gives a sharper end-point. The standard deviation of the proposed method for 60 mg of lead is 0.35 mg. The method has been successfully used to determine Pb in non-ferrous alloys.  相似文献   

15.
A new reagent for the highly selective extraction of cesium (e-1,7–2,2)4,8–8,4-(bis--o-phenylene)bisdicarbollidocobalt(1–)ate, [(C2B9H9)2(C6H4)2Co], abbreviated as BISPHECOSAN is described in this paper. The choice of organic solvent and solubilizer, dependence of distribution ratio of Cs+ on acidity and other parameters are studied. The extraction mechanism based on selective binding of Cs+ cation between two phenylene rings is presented and factors influencing the chemical stability of the reagent are determined.  相似文献   

16.
Yatirajam V  Dhamija S 《Talanta》1976,23(8):599-600
Small amounts of tungsten in natural and industrial samples can be freed from all important interfering elements by extraction of molybdenum by xanthate, reduction of tungsten by mercury and extraction of tungsten(V) thiocyanate into tribenzylamine, and finally back-extraction. The tungsten can be then determined as tetraphenylarsonium tungstate by precipitating it at pH 2-4, filtering it off and drying it at 110 degrees for 45 min. An overall error of 0.1-0.2% is obtained for 5-60 mg of tungsten.  相似文献   

17.
Singh NP  Wrenn ME 《Talanta》1983,30(4):271-274
A radiochemical procedure has been developed for the determination of alpha-emitting isotopes of uranium ((238)U, (235)U and (234)U) in soft tissues. Known amounts of sample are spiked with (232)U internal tracer and wet-ashed. Uranium is co-precipitated with iron hydroxide as carrier, and extracted into 20% trilaurylamine solution in xylene after dissolution of the precipitate in 10M hydrochloric acid. The uranium, after stripping into an aqueous phase, is electro-deposited onto a platinum disc and counted by alpha-spectrometry. The radiochemical recovery ranges from 60 to 85% for bovine liver samples. The average radiochemical recoveries for human tissues vary from 53 to 78%.  相似文献   

18.
A rapid and precise method has been developed for the determination of uranium in uranium hexafluoride material that contains essentially no non-volatile impurities. Approximately 7 g of uranium hexafluoride is transferred into a tared fluorothene tube, weighed, frozen, and hydrolyzed in 150 ml of ice-cold water in a platinum dish. The solution is evaporated to dryness, and the residue is ignited to urano-uranic oxide and weighed. The precision of a single analysis at the 95% confidence interval is ± 0.06% of the value, with no significant bias  相似文献   

19.
Irradiated uranium metal fuel was stored underwater in the K East and K West storage basins at the US Department of Energy Hanford Site. The uranium metal under damaged cladding reacted with water to generate hydrogen gas, uranium oxides, and spalled uranium metal particles which intermingled with other particulates to form sludge. While the fuel has been removed, uranium metal in the sludge remains hazardous. An expeditious routine method to analyze 0.03 wt% uranium metal in the presence of >30 wt% total uranium was needed to support safe sludge management and processing. A selective dissolution method was designed based on the rapid uranium oxide dissolution but very low uranium metal corrosion rates in hot concentrated phosphoric acid. The uranium metal-bearing heel from the phosphoric acid step then is rinsed before the uranium metal is dissolved in hot concentrated nitric acid for analysis. Technical underpinnings of the selective dissolution method, including the influence of sludge components, were investigated to design the steps and define the reagents, quantities, concentrations, temperatures, and times within the selective dissolution analysis. Tests with simulant sludge proved the technique feasible. Tests with genuine sludge showed a 0.0028 ± 0.0037 wt% (at one standard deviation) uranium metal analytical background, a 0.011 wt% detection limit, and a 0.030 wt% quantitation limit in settled (wet) sludge. In tests using genuine K Basin sludge spiked with uranium metal at concentrations above the 0.030 wt% ± 25 % (relative) quantitation limit, uranium metal recoveries averaged 99.5 % with a relative standard deviation of 3.5 %.  相似文献   

20.
The tetravalent and hexavalent uranium content of three Egyptian phosphate type ore samples namely; Sebayia, Abu Tartur and Qatrani have been studied through selective leaching by hydrochloric acid at normal, oxidized and reduced conditions at an amount of hydrochloric acid less than the stoichiometric value i.e. before phosphoric acid production. Oxidizing condition is attained by incorporating 2% of manganese dioxide in the leaching cycle, whereas reducing condition is attained by adding 2% iron powder. The achieved results show that the amount of tetravalent uranium varies between 5 and 95%. As soon as the achieved stoichiometric value of hydrochloric acid is sufficient to produce phosphoric acid both tetravalent and hexavalent uranium dissolve by virtue of phosphoric acid complexing power for uranium. The chemical form of uranium in the ore determines the type of solvent needed to recover it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号