共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of polyacrylic (PAA) and polymethacrylic (PMAA) acids have been synthesized by living anionic polymerization of the monomeric tert-butyl esters followed by subsequent hydrolysis of the corresponding polyesters. The necessary precautions were taken in order to assure good molecular weight control, as well as high yields in the polymerization reactions. The intermediate and final polymers were characterized by gel permeation chromatography and NMR-H1 spectrometry. 相似文献
2.
Binding of a cationic surfactant ion, dodecylpyridinium ion, to poly(acrylic acids) of low charge densities was examined
by potentiometry using surfactant-selective electrodes in the solutions, where the pH was kept constant by employing a pH
buffering system. The binding of the surfactant counterions was thus able to be studied at a constant pH during the binding
process. The binding took place in two steps, the first cooperative binding step and the second gradual binding step. The
critical association concentration decreased as the pH increased, indicating the predominant role of the electric interaction
in the binding. The binding isotherms obtained at different but constant pH values were analyzed by the matrix method, taking
into account the nearest-neighbor interactions among three different kinds of sites on the polymer: ionized, protonated, and
surfactant-bound. The theoretical analysis could describe only the first step but could not explain the second step. A relatively
large cooperativity parameter, u, was found for the first step and it can be between 3 × 103 and 1 × 104. When the ionic strength was decreased tenfold, the cooperativity of the binding decreased (u∼1 × 103). The binding constants of the isolated site were 5.5–6.0 × 104 kg mol−1 and slightly increased to 6.5 × 104 kg mol−1 as the ionic strength decreased. The deviation of the second step from the theoretical analysis was supposed to arise from
a change of proton dissociation constant in the nonpolar space formed by the bound surfactants.
Received: 29 November 2000/Accepted: 24 January 2001 相似文献
3.
The conformational profiles of nearest side-chain neighbors, methylene-dyad structures, of poly(acrylic acid), PAA, and poly(methacrylic acid), PMA, were determined as a function of tacticity, extent of ionization, and presence of counterion. The dominant backbone conformer states are quite similar for both isotactic and syndiotactic diads in a common charge state. Thus, the overall dimensional properties of isotactic syndiotactic and atactic chains of PAA or PMA, based upon dyad interactions, are predicted to be alike for a given charge state. Significant deviations from precise t, g+, and g? states are found for the dyad minimum energy conformations. The rod-to-coil and coil-to-rod transitions observed in PAA and PMA, respectively, as a function of increasing counterion concentration can be explained, to a large extent, by the conformational profiles of the corresponding dyad model structures. © 1994 John Wiley & Sons, Inc. 相似文献
4.
Reka Melinda Molnar Magdolna Bodnar John F. Hartmann Janos Borbely 《Colloid and polymer science》2009,287(6):739-744
The present investigation describes the synthesis and characterization of nanoparticles based on poly(acrylic acid) (PAA)
intramolecularly cross-linked with diamine, 2,2′-(ethylenedioxy)bis(ethylamine), using water-soluble carbodiimide. The aqueous
colloid dispersions of nanoparticles were clear or mildly opalescent depending on the ratio of cross-linking, pH of the solution,
and the molecular weight of PAA, finding consistent with values of transmittance between 3% and 99%. The structure was determined
by nuclear magnetic resonance spectroscopy, and the particle size was identified by dynamic light scattering (DLS) and transmission
electron microscopy (TEM) measurements. It was found that particle size depends on the pH, and at a given pH, it was caused
by the ratio of cross-linking and the molecular weight of PAA. Particle size measured by TEM varied in the range of 20 and
80 nm. In the swollen state, the average size of the particles measured by DLS was in the range of 35–160 nm. 相似文献
5.
Poly(acrylic acid) (PAA) with different molecular weight and poly(vinylpyrrolidone) (PVP) were prepared by free radical polymerization using 2,2′-azoisobutyronitrile (AIBN) as initiator in anhydrous methanol for PAA, and in distilled water for PVP. Then, the complexation between PAA and PVP in aqueous solution was studied by UV transmittance measurement and fluorescence probe technique. The result shows that (1) at low pH, the formation of complexation between PAA and PVP bases on the intermacromolecular hydrogen bond and the composition of the formed complex is around 3:2 (the unit molar ratio of PAA to PVP) at pH 2.60 over the range of pH investigated. (2) The cooperative interaction through the formation of hydrogen bond among active sites plays an important role in complex formation, and depends on the pH of solution, the required minimum chain length of poly(acrylic acid). (3) The hydrogen bond is not affected by small molecular salt, which only affects those carboxylic groups without forming hydrogen bond on the PAA chain. 相似文献
6.
Neelesh Bharti Shukla 《Polymer Degradation and Stability》2009,94(8):1238-1244
The oxidative degradation of poly(acrylic acid) (PAA), a water soluble polymer, was studied at various temperatures with different concentrations of persulfates, potassium persulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS). The photodegradation of PAA was also examined with APS as oxidizer. The degraded samples were analyzed for the time evolution of molecular weight distribution by gel permeation chromatography. A theoretical model based on the continuous distribution kinetics was developed that accounted for the polymer degradation and the dissociation of persulfate. The rate coefficients for the oxidative and photooxidative degradation of PAA were determined from the parametric fit of the model with experimental data. The rate of degradation increased with increasing amount of persulfate in both oxidative and photooxidative degradation. The rate of degradation also increased with increasing temperature in the case of oxidative degradation. 相似文献
7.
Pervaporation of alcohol-toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol) 总被引:1,自引:0,他引:1
Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend composition and of the feed mixture composition. The results showed that a polymer blending method could be very useful to develop new membranes with improved permselectivity. The pervaporation properties could be optimized by adjusting the blend composition. All the blend membranes tested showed a decrease in flux with increasing poly(vinyl alcohol) content for both methanol—toluene and ethanol—toluene liquid mixtures. The alcohols permeated preferentially through all tested blend membranes, and the selectivity values increased with increasing poly(vinyl alcohol) content. The pervaporation characteristics of the blend membranes were also strongly influenced by the feed mixture composition. The fluxes increased exponentially with increasing alcohol concentration in the feed mixtures, whereas the selectivities decreased for both liquid mixtures. 相似文献
8.
Grigoriy A. Mun Gulshat S. Sarybayeva Artem V. Dubolazov 《European Polymer Journal》2003,39(8):1687-1691
The effects of polymer concentration, molecular weight of poly(acrylic acid) (PAA), addition of sodium, potassium, ammonium and copper (II) chlorides on the complex formation ability of the system PAA-poly(acrylamide) (PAAM) have been studied in aqueous solutions. The critical pH values of the complexation were determined in different conditions. The complex formation ability of PAAM is compared with other non-ionic polymers. It was shown that an increase in polymers concentration, molecular weight of PAA and ionic strength favours the complexation and shifts the critical pH values to the higher pH region. An addition of CuCl2 to the mixture of two polymers enhances the complexation drastically due to the formation of triple complexes. 相似文献
9.
Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. 1H and 13C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed. 相似文献
10.
Jianxian Xue Charles A. Wilkie 《Journal of polymer science. Part A, Polymer chemistry》1995,33(7):1019-1024
When a poly(ethylene terephthalate), PET, film is heated in an aqueous solution of methacrylic acid in the presence of hydrogen peroxide as an initiator, it is found that the weight of the film is increased. The amount of methacrylic acid that may be added onto the film is dependent upon the concentration of the monomer, the initiator, and the temperature at which the reaction occurs. Pretreatment of the film with 1,1,2,2,tetrachloroethane causes swelling and the amount of add-on is increased as the swelling level increases. Methacrylic-acid-modified PET films hydrolyze at room temperature in aqueous sodium hydroxide; the rate of hydrolysis is dependent upon the amount of add-on and the concentration of the base. This procedure leads to a chemically induced blend of polymethacrylic acid and poly(ethylene terephthalate), and grafting of the monomer onto the polymer film does not occur. © 1995 John Wiley & Sons, Inc. 相似文献
11.
The ion-specific swelling behavior of poly(acrylic acid) (PAA) gel prepared by -ray irradiation was investigated as a function of salt concentration in the presence of 0.01 M HCl. The anion specificity for the swelling ratio was similar to that for many kinds of hydrogels, i.e., Cl–<Br–<NO3
–<I–, while the cation specificity proved to be rather unusual, i.e., Mg2+<Ca2+<Li+<Na+<K+<Cs+. In order to find any differences in the hydration of uncharged PAA from that of other polymers having typical polar groups, the hydrogen-bonding hydrations on the relevant polar groups were compared for small molecule analogues with an ab initio molecular orbital calculation. According to the results, the marked deswelling of PAA gel in the presence of strongly hydrated cations was ascribed to the unfavorable hydration to the acidic proton of PAA due to the reduced availability of water oxygen as well as to the destabilization of hydrophobic hydration developing around the uncharged PAA. 相似文献
12.
Synthesis of monodisperse poly(methacrylic acid) microspheres by distillation-precipitation polymerization 总被引:1,自引:0,他引:1
Monodisperse poly(methacrylic acid) (PMAA) microspheres were prepared by distillation-precipitation polymerization in acetonitrile with 2,2′-azobisisobutyronitrile (AIBN) as initiator. The polymeric microspheres were formed simultaneously via a precipitation polymerization manner during the distillation of the solvent out of the reaction system in the absence of any surfactant and crosslinker. Monodisperse PMAA microspheres with spherical shape and smooth surface were synthesized with diameters ranging from 60 to 290 nm below the glass transition temperature of PMAA without any stabilizer. The particle size increased with increasing monomer concentration, which may be resulted from the higher molecular weight for the polymerization. To investigate the growth procedure of PMAA microspheres, the morphology of microspheres over the distillated acetonitrile volume was conducted by monitoring the morphologies with TEM. GPC and FTIR provide key insights into the particle growth mechanism. The PMAA microspheres may be formed by an internal contraction due to the marginal solvency of the continuous phase with the aid of the hydrogen-bonding interaction between the carboxylic acid unit, in which the particles were stabilized by the steric effect of the pendent chains and surface gel as well as the electrostatic repulsion from the carboxylic acid group. 相似文献
13.
Poly(lactic acid)(PLA)is one of the most important bio-plastics,and chemical modification of the already-polymerized poly(lactic acid)chains may enable optimization of its material properties and expand its application areas.In this study,we demonstrated that poly(lactic acid)can be readily dissolved in acrylic acid at room temperature,and acrylic acid can be graft-polymerized onto poly(lactic acid)chains in solution with the help of photoinitiator benzophenone under 254 nm ultraviolet(UV)irradiation.Similar photo-grafting polymerization of acrylic acid(PAA)has only been studied before in the surface modification of polymer films.The graft ratio could be controlled by various reaction parameters,including irradiation time,benzophenone content,and monomer/polymer ratios.This photo-grafting reaction resulted in high graft ratio(graft ratio PAA/PLA up to 180%)without formation of homopolymers of acrylic acid.When the PAA/PLA graft ratio was higher than 100%,the resulting PLA-g-PAA polymer was found dispersible in water.The pros and cons of the photo-grafting reaction were also discussed. 相似文献
14.
15.
Poly(methacrylic acid)-grafted hollow silica vesicles (PMAA-g-hollow silica vesicles) were obtained through a grafting-from approach. PMAA brushes were formed by performing atom-transfer radical polymerisation of sodium methacrylate with an initiator attached to the hollow silica spheres. PMAA-g-hollow silica vesicles were characterised by using TEM, thermogravimetric analysis (TGA) and FTIR spectroscopy. pH-dependent ξ potential and (1)H NMR spectra of PMAA-g-hollow silica vesicles were measured, and the results indicated that MAA brushes in PMAA-g-hollow silica vesicles had a lower ionisation degree and low solubility in acidic aqueous solution, for example, pH 3.4, but a higher ionisation degree and high solubility when the pH was higher than 7. Also it was demonstrated that calcein blue and fluorescein isothiocyanate (FITC) labelled dextran (M(n):10 kDa) could be encapsulated in the interiors of the PMAA-g-hollow silica vesicles with a negligible amount in PMAA brushes at pH 2, and pH-triggered release of calcein blue and FITC-labelled dextran from PMAA-g-hollow silica vesicles was observed at pH 7.4. 相似文献
16.
Yoshihito Inai Shin-Ichiro Kato Tadamichi Hirabayashi Kenji Yokota 《Journal of polymer science. Part A, Polymer chemistry》1996,34(12):2341-2348
The complexation of three kinds of sequence-ordered acid (co)polymers with a base homopolymer was studied. The acid polymers used are poly(methacrylic acid) 1 , alternating (1:1) ethylene-methacrylic acid copolymer 2 , and periodic (2:1) ethylene-methacrylic acid copolymer 3 , and the base polymer is poly(4-vinylpyridine) 4. When mixing a methanol solution of 1, 2 , or 3 with that of 4 (0.1 M of each functional group), precipitate was formed immediately for all polymer pairs. All the precipitates contained carboxyl and pyridyl groups in ca. 1:1 molar ratio and showed IR spectra indicating the hydrogen bonding between carboxyl and pyridyl groups. When mixing dilute methanol solutions (10−4M) of the above polymer pairs, no precipitation was observed, but the extinction coefficient (ϵB) at 255 nm of pyridyl groups in 4 was found to increase with an increasing acid polymer concentration. This is ascribed to hydrogen bonding between carboxyl and pyridyl groups in methanol. Based on the ϵB variation, the order of complexation constants for acid/base polymer pairs was estimated as follows: 1/4 pair ∼ 2/4 pair ≫ 3/4 pair. © 1996 John Wiley & Sons, Inc. 相似文献
17.
Semi-crystalline poly(vinyl alcohol) was modified by UV radiation with acrylic acid monomer to get interpenetrating poly(acrylic acid) modified poly(vinyl alcohol), PVAAA, membrane. The stability of various PVAAA membranes in water, 2 M CH3OH, 2 M H2SO4, and 40 wt% KOH aqueous media were evaluated. It was found that the stability of PVAAA membrane is stable in 40 wt% KOH solution. The PVAAA membranes were characterized by differential scanning calorimetry, X-ray diffraction, and thermogravimetry analysis. These results show that (1) the crystallinity in PVAAA decreased with increasing the content of poly(acrylic acid) in the PVAAA membranes. (2) The melting point of the PVAAA membrane is reduced with increasing the content of poly(acrylic acid) in the membrane. (3) Three stages of thermal degradation were found for pure PVA. Compared to pure PVA, the temperature of thermal degradation increased for the PVAAA membrane. The various PVAAA membranes were immersed in KOH solution to form polymer electrolyte membranes, PVAAA-KOH, and their performances for alkaline solid polymer electrolyte were conducted. At room temperature, the ionic conductivity increased from 0.044 to 0.312 S/cm. The result was due to the formation of interpenetrating polymer chain of poly(acrylic acid) in the PVAAA membrane and resulting in the increase of charge carriers in the PVA polymer matrix. Compared to the data reported for different membranes by other studies, our PVAAA membrane are highly ionic conducting alkaline solid polymer electrolytes membranes. 相似文献
18.
利用十二烷基硫酸钠/吐温20复配表面活性剂和原位生成的聚甲基丙烯酸甲酯(PMMA)种子乳胶,发展了一种可在全水相中"绿色"合成较高浓度的聚甲基丙烯酸(PMAA)纳米水凝胶的新方法.以PMAA纳米水凝胶为前驱体,采用原位氧化沉淀法制备了磁性PMAA纳米微球.利用动态光散射法、FTIR分析、TEM观察、振动样品磁强计测试(VSM)、热重分析(TG)等对纳米水凝胶和磁性微球进行了表征,并探讨了PMAA纳米水凝胶的形成机理.结果表明,吐温20与MAA和PMAA间的氢键作用,促成了交联PMAA/吐温20复合物层在PMMA种子乳胶表面的选择性生长,导致生成了具有核壳结构的PMAA纳米水凝胶.PMAA纳米水凝胶表现出良好的p H响应性,当介质的p H值由1增加至6时,其流体力学体积扩张了近50倍.磁性PMAA纳米微球具有超顺磁性,其饱和磁化强度高达50 A·m~2/kg. 相似文献
19.
Dense membranes made by crosslinking of poly(vinyl alcohol) (PVA) with poly(acrylic acid) (PAA) were prepared and tested in pervaporation and differential permeation of water–alcohol mixtures. Instead of a decrease of permeation flux as generally observed with most crosslinking agents, an increase in the permeability was observed with PAA crosslinked membranes at low PAA contents. The permeation flux increases with PAA contents in the polymer with no selectivity reduction for membranes containing less than 15 wt. % PAA. The membranes show good performances to water–2-propanol and water–ethanol mixtures, i.e. high fluxes and high selectivities to pure water. The membranes were stable and highly permeable to water. The enhancement of the permeability of PVA can be explained by a reduced crystallinity and an improved diffusivity due to the presence of PAA. 相似文献
20.
聚甲基丙烯酸基纳米水凝胶的“绿色”合成 总被引:1,自引:0,他引:1
利用原位生成的聚甲基丙烯酸甲酯种子乳胶模板以及表面活性剂与功能单体间的正负电荷作用,发展了一种可在全水相中“绿色”合成聚甲基丙烯酸(PMAA)基纳米水凝胶的新方法.利用动态光散射法、ξ-电位测定、FTIR和TEM对纳米水凝胶的尺寸及其分布、表面电荷、组成、形态、结构和pH响应行为进行了表征.结果表明,PMAA基纳米水凝胶具有聚甲基丙烯酸甲酯内核和交联聚甲基丙烯酸外壳的核壳结构.当甲基丙烯酸(MAA)的用量由2 mL增至3 mL时,PMAA基纳米水凝胶的尺寸变大.当MAA的用量增加至5 mL时,反应体系中除了生成PMAA基纳米水凝胶外,还生成了PMAA次级粒子.PMAA基纳米水凝胶表现出良好的pH响应性:当介质的pH值由2增加至7时,其流体力学体积扩张了近80倍. 相似文献