首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The determination of di(2-ethylhexyl) phthalate migration was achieved in artificial sweat using gas chromatography mass spectrometry following activated carbon enrichment of samples. Response surface methodology (RSM) was used to optimise the conditions for maximum recovery and to understand the significance and interaction of the factors affecting the recovery of di(2-ethylhexyl) phthalate. The best compromise of analytical conditions for the simultaneous determination of analyte from spiked artificial sweat was found to be: pH (3.1), activated carbon amount (1.4 g L?1), adsorption time (55 min) and elution solvent (chloroform). These conditions were applied to study the migration of di(2-ethylhexyl) phthalate from different children’s toys into artificial sweat. The detection limit of the method was 13.8 μg L?1, while the relative standard deviation (%) value for the analysis of 100 μg L?1 of the analyte was below 3.7% (n = 5).  相似文献   

2.
An Ultrasound-Vortex-Assisted Dispersive Liquid–Liquid Micro-Extraction (USVADLLME) procedure coupled with Gas Chromatography-Flame Ionization Detector (GC-FID) or Gas Chromatography-Ion Trap Mass Spectrometry (GC-IT/MS) is proposed for rapid analysis of six phthalate esters in hydroalcoholic beverages (alcohol by volume, alc vol−1, ≤40%). Under optimal conditions, the enrichment factor of the six analytes ranges from 220- to 300-fold and the recovery from 85% to 100.5%. The limit of detection (LOD) and limit of quantification (LOQ) are ≥0.022 μg L−1 and ≥0.075 μg L−1, respectively. Intra-day and inter-day precisions expressed as relative standard deviation (RSD), are ≤8.2% and ≤7.0%, respectively. The whole proposed methodology has demonstrated to be simple, reproducible and sensible for the determination of trace phthalate esters in red and white wine samples.  相似文献   

3.
Ultrasound-assisted emulsification microextraction with solidification of floating organic droplet (USAEME-SFO) followed by high performance liquid chromatography-diode array detection (HPLC-DAD), was applied for preconcentration and determination of phthalate esters in cosmetic and water samples. The effects of different variables on the extraction efficiency were studied simultaneously using an experimental design. The variables of interest in the USAEME-SFO were extraction solvent volume, salt effect, extraction time and centrifugation time. A factorial experimental design was employed for screening to determine the variables significantly affecting the extraction efficiency. Then, the significant factors were optimized by using a Box-Behnken design (BBD) and the response surface equations were derived. The optimum experimental conditions were extraction solvent volume, 30 μL; sodium chloride concentration, 20% (w/v); extraction time, 12 min and centrifugation time, 5 min. Under optimal conditions, the preconcentration factors were between 355 and 409. The limit of detections (LODs) ranged from 0.005 μg L−1 (for Diethylphthalate) to 0.01 μg L−1 (for Dimethylphthalate). Dynamic linear ranges; (DLRs) of 0.05-800 and 0.05-1000 μg L−1 were obtained for Diisobutyl- and Dimethylphthalate, respectively. The performance of the method was evaluated for extraction and determination of phthalate esters in cosmetic and environmental water samples in micrograms per liter and satisfactory results were obtained (RSDs < 12.6%).  相似文献   

4.
A sensitive and selective column adsorption method is proposed for the off-line preconcentration and determination of phthalic acid esters (PAEs), namely benzyl-butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di-cyclohexyl phthalate (DCHP). The PAEs was preconcentrated on Saccharomyces cerevisiae immobilized on silica gel and then determined by high performance liquid chromatography (HPLC). Several parameters on the recovery of the analytes were investigated. Recoveries of BBP, DBP and DCHP were 100±2, 98±2 and 98±3%, respectively, at 95% confidence level under optimum conditions. The detection limits (3S/N) of BBP, DBP and DCHP were 3.2, 6.3 and 3.1 μg l−1, respectively. The capacity of the adsorbent was also examined and found to be 1.4 mg g−1 for BBP and DBP, and 3.6 mg g−1 for DCHP. S. cerevisiae immobilized on silica gel is suitable for repeated use without decreasing recovery up to about 25 adsorption-elution cycles. The proposed method was successfully applied to the determination of PAEs in river water with high precision and accuracy.  相似文献   

5.
Phthalates (PAEs) are ubiquitous toxic chemical compounds. During the last few years, some phthalate metabolites (MPAEs) have been proposed as appropriate biomarkers in human urine samples to determine PAE human intake and exposure. So, it is necessary to have fast, easy, robust and validated analytical methods to determine selected MPAEs in urine human samples. Two different instrumental methods based on gas (GC) and ultra-high performance liquid (UHPLC) chromatography coupled to mass spectrometry (MS) have been optimized, characterized and validated for the simultaneous determination of nine primary and secondary phthalate metabolites in urine samples. Both instrumental methods have similar sensitivity (detection limits ranged from 0.03 to 8.89 pg μL−1 and from 0.06 to 0.49 pg μL−1 in GC–MS and UHPLC–MS2, respectively), precision (repeatability, expressed as relative standard deviation, which was lower than 8.4% in both systems, except for 5OH-MEHP in the case of GC–MS) and accuracy. But some advantages of the UHPLC–MS2 method, such as more selectivity and lower time in the chromatographic runs (6.8 min vs. 28.5 min), have caused the UHPLC–MS2 method to be chosen to analyze the twenty one human urine samples from the general Spanish population. Regarding these samples, MEP showed the highest median concentration (68.6 μg L−1), followed by MiBP (23.3 μg L−1), 5cx-MEPP (22.5 μg L−1) and MBP (19.3 μg L−1). MMP (6.99 μg L−1), 5oxo-MEHP (6.15 μg L−1), 5OH-MEHP (5.30 μg L−1) and MEHP (4.40 μg L−1) showed intermediate levels. Finally, the lowest levels were found for MBzP (2.55 μg L−1). These data are within the same order of magnitude as those found in other similar populations.  相似文献   

6.
An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 °C for 60 min with 20% Na2SO4. The linear calibration curves were observed for the concentrations ranging from 1 to 300 μg L−1 with the correlation coefficients (R2) being greater than 0.99. The method detection limits of most analytes were below 1 μg L−1 except DCAA and MCAA that were 2 and 18 μg L−1, respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water.  相似文献   

7.
Hydrogen evolution bothers stripping analysis significantly. Dioctyl phthalate-based carbon paste electrode exhibits extremely wide cathodic potential window. It is explored as a powerful substrate electrode to solve the problem of hydrogen evolution and further improve reproducibility for stripping analysis using bismuth-coated electrodes for the first time. It was successfully applied to the simultaneous determination of Zn2+, Cd2+, and Pb2+. Linear responses are obtained for Zn2+ in the range of 10–100 μg L−1 and for Pb2+ and Cd2+ in the range of 5–100 μg L−1. The detection limits for Zn2+, Cd2+, and Pb2+ are 0.1 μg L−1, 0.22 μg L−1 and 0.44 μg L−1, respectively. The method has been successfully applied to the determination of Zn2+, Cd2+, and Pb2+ in waste water samples. The detection strategy based on the combination of dioctyl phthalate-based carbon paste electrode and bismuth-coated electrodes holds great promise for stripping analysis.  相似文献   

8.
Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaça by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO3)2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L−1 As, 100-1000 μg L−1 Cu and 0.5-30 μg L−1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaça samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaça samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L−1 As, 22 μg L−1 Cu and 0.05 μg L−1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L−1 As, Pb and 500 μg L−1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS.  相似文献   

9.
Zhong S  Tan SN  Ge L  Wang W  Chen J 《Talanta》2011,85(1):488-492
As a first attempt, cloud point extraction (CPE) was developed to preconcentrate bisphenol A (BPA), α-naphthol and β-naphthol prior to performing capillary zone electrophoresis (CZE) analysis. The parameters influencing the CPE efficiency, such as Triton X-114 concentrations, pH value, extraction time and temperature were systematically evaluated.After diluting with acetonitrile, the surfactant-rich phase of CPE can be injected directly into the CE instrument. The CZE baseline separation was achieved with running buffer (pH 9.5) composed of 50 mM sodium tetraborate in 30% (v/v) methanol, and an applied voltage of 25 kV. Under the optimized CPE and CZE conditions, an preconcentration factor of 50 times could be obtained and the limit of quantification for the three analytes were found to be 1.67 μg L−1, 0.80 μg L−1 and 0.67 μg L−1 for BPA, α-naphthol and β-naphthol, respectively. The proposed methods have shown to be a green, rapid and effective approach for determination of three analytes present in river water samples.  相似文献   

10.
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) was investigated using gas chromatography–mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1–1000 μg L−1 and 0.01–100 μg L−1 with the limits of detection (LOD) of 0.03 μg L−1 and 0.002 μg L−1 for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L−1 and 0.037 ± 0.001 μg L−1, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3–106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples.  相似文献   

11.
A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L−1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L−1 for Pb(II) and Cd(II), and 12-100 μg L−1 for Zn(II). The limits of detection (Sbl/S = 3) were 0.2 μg L−1 for Pb(II), 0.8 μg L−1 for Cd(II) and 11 μg L−1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h−1. The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.  相似文献   

12.
A 4-(2-pyridylazo)-resorcinol (PAR)-modified carbon ceramic electrode (CCE) prepared by the sol-gel technique has been reported for the first time in this paper. By immersing the CCE in aqueous solution of PAR (0.001 mol L−1), after a short period of time, a thin film of PAR was rapidly formed on the surface of the electrode due to its strong adsorption properties. A differential pulse anodic stripping voltammetric (DPASV) method was developed for determination of Ag(I) at the modified carbon ceramic electrode. The analysis procedure consisted of an open circuit accumulation step in a sample solution which was continuously stirred for 12 min. This was followed by replacing the medium with a clean solution where the accumulated Ag(I) was reduced for 15 s in −0.6 V. Then, the potential was scanned from −0.2 to +0.2 V to obtain the voltammetric peak. The detection limit of silver(I) was 0.123 μg L−1, and for seven successive determinations of 10, 100 and 200 μg L−1 Ag(I), the relative standard deviations were 2.1, 1.4 and 1.03%, respectively. The calibration curve was linear for 0.5-300 μg L−1 silver(I). The procedure was applied to determine silver(I) in X-ray photographic films and super-alloy samples.  相似文献   

13.
Sensitive and unequivocal determination of analytes/contaminants in complex matrices is a challenge in the field of food safety control. In this study, various acquisition modes (Full MS/AIF, Full MS + tMS/MS, Full MS/dd MS/MS and tSIM/ddMS/MS) and parameters of a quadrupole–orbitrap hybrid mass spectrometer (Q Exactive) were studied in detail. One of the main conclusions has been that, reducing the scan range for Full MS (using the quadrupole) and targeted modes give higher signal-to-noise (S/N) ratios and thereby better detection limits for analytes in matrix. The use of Q Exactive in a complex case, for the confirmatory analysis of hormones in animal urine is presented. A targeted SIM data dependent MS/MS (tSIM/ddMS/MS) acquisition method for determination of eight synthetic hormones (trenbolone, 17α ethinylestradiol, zeranol, stanozolol, dienestrol, diethylstilbestrol, hexestrol, taleranol) and a naturally occurring hormone (zearalenone) in animal urine were optimized to have sensitive precursors from targeted SIM mode and trigger MS/MS scans over the entire chromatograph peak. The method was validated according to EC/657/2002. CCα (decision limit) for the analytes ranged between 0.11 μg L−1 and 0.69 μg L−1 and CCβ (detection capability) ranged between 0.29 μg L−1 and 0.90 μg L−1.  相似文献   

14.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography with fluorescence detector was applied for the determination of alkylphenols and their short-chained ethoxylates in water samples. Development of DLLME procedure included optimisation of some important parameters such as kind and volume of extracting and dispersing solvents. Under optimised conditions 50 μL of trichloroethylene in 1.5 mL of acetone were rapidly injected into 5 mL of a water sample. After centrifuging the organic phase containing the analytes was taken for evaporation with a gentle nitrogen purge and reconstituted to 50 μL of acetonitrile. The aliquot of this solution was analysed with the use of HPLC. For octylphenol (OP) and octylphenol ethoxylates (OPEOs) linearity was satisfactory in the range 8–1000 μg L−1 and for nonylphenol (NP) and nonylphenol ethoxylates (NPEOs) linearity was in the range from 50 to about 3000 μg L−1. Limit of quantitation was 0.1 μg L−1 for OP and OPEOs and 0.3 μg L−1 for NP and NPEOs. Satisfactory recoveries between 66 and 79% were obtained for environmental samples. The results showed that DLLME is a simple, rapid and sensitive analytical method for the preconcentration of trace amounts of alkylphenols and their ethoxylates in environmental water samples.  相似文献   

15.
A dispersive liquid–liquid microextraction (DLLME) method followed by high-performance liquid chromatography–triple quadrupole mass spectrometry has been developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS C10, C11, C12, and C13), nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), and di-(2-ethylhexyl)phthalate (DEHP). The applicability of the method has been tested by the determination of the above mentioned organic pollutants in tap water and wastewater. Several parameters affecting DLLME, such as, the type and volume of the extraction and disperser solvents, sample pH, ionic strength and number of extractions, have been evaluated. Methanol (1.5 mL) was selected among the six disperser solvent tested. Dichlorobenzene (50 μL) was selected among the four extraction solvent tested. Enrichment factor achieved was 80. Linear ranges in samples were 0.01–3.42 μg L−1 for LAS C1013 and NP2EO, 0.09–5.17 μg L−1 for NP1EO, 0.17–9.19 μg L−1 for NP and 0.40–17.9 μg L−1 for DEHP. Coefficients of correlation were higher than 0.997. Limits of quantitation in tap water and wastewater were in the ranges 0.009–0.019 μg L−1 for LAS, 0.009–0.091 μg L−1 for NP, NP1EO and NP2EO and 0.201–0.224 μg L−1 for DEHP. Extraction recoveries were in the range from 57 to 80%, except for LAS C10 (30–36%). The method was successfully applied to the determination of these pollutants in tap water and effluent wastewater from Seville (South of Spain). The DLLME method developed is fast, easy to perform, requires low solvent volumes and allows the determination of the priority hazardous substances NP and DEHP (Directive 2008/105/EC).  相似文献   

16.
This paper describes the development of a multi-residue method for the determination of 36 emerging organic pollutants (26 biocides, 5 UV-filters and 5 benzothiazoles) in raw and treated wastewater, activated sludge and surface water using liquid chromatography–tandem mass spectrometry (LC–MS/MS). The target analytes were enriched from water samples adjusted to pH 6 by solid-phase extraction (SPE) on Oasis HLB 200 mg cartridges and eluted with a mixture of methanol and acetone (60/40, v/v). Extraction of freeze-dried sludge samples was accomplished by pressurized liquid extraction (PLE) using a mixture of methanol and water (50/50, v/v) as extraction solvent followed by SPE. LC–tandem MS detection was compared using electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in positive and negative ionization mode. ESI exhibited strong ion suppression for most target analytes, while APCI was generally less susceptible to ion suppression but partially leading to ion enhancement of up to a factor of 10. In general, matrix effects could be compensated using stable isotope-labeled surrogate standards, indicated by relative recoveries ranging from 70% to 130%. In wastewater, activated sludge and surface water up to 33 analytes were detected. Maximum concentrations up to 5.1 and 3.9 μg L−1 were found in raw wastewater for the water-soluble UV-filters benzophenone-4 (BZP-4) and phenylbenz-imidazole sulfonic acid (PBSA), respectively. For the first time, the anti-dandruff climbazole was detected in raw wastewater and in activated sludge with concentrations as high as 1.4 μg L−1 and 1.2 μg g TSS−1, respectively. Activated sludge is obviously a sink for four benzothiazoles and two isothiazolones, as concentrations were detected in activated sludge between 120 ng g TSS−1 (2-n-octyl-4-isothiazolin-3-one, OIT) to 330 ng g TSS−1 (benzothiazole-2-sulfonic acid, BTSA).  相似文献   

17.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

18.
A stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography-quadrupole mass spectrometry (SBSE-LD/LVI-GC-qMS) was evaluated for the simultaneous determination of higher alcohol acetates (HAA), isoamyl esters (IsoE) and ethyl esters (EE) of fatty acids. The method performance was assessed and compared with other solventless technique, the solid-phase microextraction (SPME) in headspace mode (HS). For both techniques, influential experimental parameters were optimised to provide sensitive and robust methods. The SBSE-LD/LVI methodology was previously optimised in terms of extraction time, influence of ethanol in the matrix, liquid desorption (LD) conditions and instrumental settings. Higher extraction efficiency was obtained using 60 min of extraction time, 10% ethanol content, n-pentane as desorption solvent, 15 min for the back-extraction period, 10 mL min−1 for the solvent vent flow rate and 10 °C for the inlet temperature. For HS-SPME, the fibre coated with 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) afforded highest extraction efficiency, providing the best sensitivity for the target volatiles, particularly when the samples were extracted at 25 °C for 60 min under continuous stirring in the presence of sodium chloride (10% (w/v)). Both methodologies showed good linearity over the concentration range tested, with correlation coefficients higher than 0.984 for HS-SPME and 0.982 for SBES-LD approach, for all analytes. A good reproducibility was attained and low detection limits were achieved using both SBSE-LD (0.03-28.96 μg L−1) and HS-SPME (0.02-20.29 μg L−1) methodologies. The quantification limits for SBSE-LD approach ranging from 0.11 to 96.56 μg Land from 0.06 to 67.63 μg L−1 for HS-SPME. Using the HS-SPME approach an average recovery of about 70% was obtained whilst by using SBSE-LD obtained average recovery were close to 80%. The analytical and procedural advantages and disadvantages of these two methods have been compared.Both analytical methods were used to determine the HAA, IsoE and EE fatty acids content in “Terras Madeirenses” table wines. A total of 16 esters were identified and quantified from the wine extracts by HS-SPME whereas by SBSE-LD technique were found 25 esters which include 2 higher alcohol acetates, 4 isoamyl esters and 19 ethyl esters of fatty acids. Generally SBSE-LD provided higher sensitivity with decreased analysis time.  相似文献   

19.
In the present work, a novel type of superparamagnetic nanosorbent, polythiophene-coated Fe3O4 nanoparticles (Fe3O4@PTh NPs), have been successfully synthesized. The synthesized NPs were characterized by scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). The synthesized Fe3O4@PTh NPs were applied as an efficient sorbent for extraction and preconcentration of several typical plasticizer compounds (di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and dioctyl adipate (DOA)) from environmental water samples. Separation of Fe3O4@PTh NPs from the aqueous solution was simply achieved by applying external magnetic field. Separation and determination of the extracted plasticizers was performed by gas chromatography–flame ionization detection (GC–FID). Several variables affecting the extraction efficiency of the analytes i.e., amount of NPs sorbent, salt concentration, extraction time, and desorption conditions were investigated and optimized. The best working conditions were as follows: amount of sorbent, 100 mg; NaCl concentration, 30% (w/v); sample volume, 45 mL; extraction time, 10 min; and 100 μL of ethyl acetate for desorption of the analytes within 2 min. Under optimized conditions, preconcentration factors for DBP, DEHP, and DOA were obtained as 86, 194, and 213, respectively. The calibration curves were linear (R2 > 0.998) in the concentration range of 0.4–100 μg L−1 for both DEHP and DOA and 0.7–100 μg L−1 for DBP. The limits of detection (LODs) were obtained in the range of 0.2–0.4 μg L−1. The intra-day relative standard deviations (RSDs%) based on four replicates were obtained in the range of 4.0–12.3%. The proposed procedure was applied to analysis of water samples including river water, bottled mineral water, and boiling water exposed to polyethylene container (after cooling) and recoveries between 85 and 99% and RSDs lower than 12.8% were obtained.  相似文献   

20.
A sequential injection method (SIA) for carbon speciation in inland bathing waters was developed comprising, in a single manifold, the determination of dissolved inorganic carbon (DIC), free dissolved carbon dioxide (CO2), total carbon (TC), dissolved organic carbon and alkalinity. The determination of DIC, CO2 and TC was based on colour change of bromothymol blue (660 nm) after CO2 diffusion through a hydrophobic membrane placed in a gas diffusion unit (GDU). For the DIC determination, an in-line acidification prior to the GDU was performed and, for the TC determination, an in-line UV photo-oxidation of the sample prior to GDU ensured the conversion of all carbon forms into CO2. Dissolved organic carbon (DOC) was determined by subtracting the obtained DIC value from the TC obtained value. The determination of alkalinity was based on the spectrophotometric measurement of bromocresol green colour change (611 nm) after reaction with acetic acid. The developed SIA method enabled the determination of DIC (0.24–3.5 mg C L−1), CO2 (1.0–10 mg C L−1), TC (0.50–4.0 mg C L−1) and alkalinity (1.2–4.7 mg C L−1 and 4.7–19 mg C L−1) with limits of detection of: 9.5 μg C L−1, 20 μg C L−1, 0.21 mg C L−1, 0.32 mg C L−1, respectively. The SIA system was effectively applied to inland bathing waters and the results showed good agreement with reference procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号