首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical detection of cell lines of MCF-7 (human breast cancer) has been reported, using magnetic beads for the separation tool and high-affinity DNA aptamers for signal recognition. The high specificity was obtained by using the magnetic beads and aptamers, and the good sensitivity was realized with the signal amplification of DNA capped CdS or PbS nanocrystals. The ASV (anodic stripping voltammetry) technology was employed for the detection of cadmic cation and lead ions, for electrochemical assay of the amount of the target cells and biomarkers on the membrane of target cells, respectively. This electrochemical method could respond to as low as 100 cells mL−1 of cancer cells with a linear calibration range from 1.0 × 102 to 1.0 × 106 cells mL−1, showing very high sensitivity. Moreover, the amounts of HER-3 which were overexpressed on MCF-7 cells were calculated correspond to be 3.56 × 104 anti-HER-3 antibody molecules. In addition, the assay was able to differentiate between different types of target and control cells based on the aptamers and magnetic beads used in the assay, indicating the wide applicability of the assay for early and accurate diagnose of cancers.  相似文献   

2.
Novel ferrocenyl based carboranes (FcCBs) and their distinguish behavior for cancer cell recognition have been explored in this contribution. The voltammetric study in a droplet of 10 μL placed on the surface of a glassy carbon electrode demonstrates the excellent electrochemical behavior of FcCBs, which could be further exploited for establishing the promising and sensitive biosensors. The FcCBs’ redox behavior is examined in a wide pH range, and square wave voltammetry revealed the reversible and irreversible nature of first and second anodic peaks. The obvious shifts in peak potentials corresponding with the change of pH values demonstrate the abstraction of electrons to be accompanied with the transfer of protons. By using the droplet electrochemical technique, FcCBs can be employed to distinguish normal and cancer cells with a linear range from 1.0 × 103 to 3.0 × 104 cells mL−1 and the limit of detection at 800 cells mL−1. The novel carborane derivatives could be utilized as important potential molecular probes for specific recognition of cancer cells like leukemia cells from normal cells.  相似文献   

3.
Cancer is one of the most serious and lethal diseases around the world. Its early detection has become a challenging goal. To address this challenge, we developed a novel sensing platform using aptamer and RNA polymerase-based amplification for the detection of cancer cells. The assay uses the aptamer as a capture probe to recognize and bind the tumor marker on the surface of the cancer cells, forming an aptamer-based sandwich structure for collection of the cells in the microplate wells, and uses SYBR Green II dye as a tracer to produce strong fluorescence signal. The tumor marker interacts first with the recognition probes which were composed of the aptamer and single-stranded T7 RNA polymerase promoter. Then, the recognition probe hybridized with template probes to form a double-stranded T7 RNA polymerase promoter. This dsDNA region is extensively transcribed by T7 RNA polymerase to produce large amounts of RNAs, which are easily monitored using the SYBR Green II dye and a standard fluorometer, resulting in the amplification of the fluorescence signal. Using MCF-7 breast cancer cell as the model cell, the present sensing platform showed a linear range from 5.0 × 102 to 5.0 × 106 cells mL−1 with a detection limit of 5.0 × 102 cells mL−1. This work suggested a strategy to use RNA signal amplification combining aptamer recognition to develop a highly sensitive and selective method for cancer cells detection.  相似文献   

4.
A one-step electrochemical aptasensor using the thiol- and methylene blue- (MB-) dual-labeled aptamer modified gold electrode for determination of ochratoxin A (OTA) was presented in this research. The aptamer against OTA was covalently immobilized on the surface of the electrode by the self-assembly effect and used as recognition probes for OTA detection by the binding induced folding of the aptamer. Under the optimal conditions, the developed electrochemical aptasensor demonstrated a wide linear range from 0.1 pg mL−1 to 1000 pg mL−1 with the limit of detection (LOD) of 0.095 pg mL−1, which was an extraordinary sensitivity compared with other common methods for OTA detection. Moreover, as a practical application, this proposed electrochemical aptasensor was used to monitor the OTA level in red wine samples without any special pretreatment and with satisfactory results obtained. Study results showed that this electrochemical aptasensor could be a potential useful platform for on-site OTA measurement in real complex samples.  相似文献   

5.
In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au–thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer–AuNPs–HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1 × 102 to 1 × 107 cells mL−1 and high sensitivity with a low detection limit of 30 cells mL−1. Furthermore, after the electrochemical detection, the activation potential of −0.9 to −1.7 V was performed to break Au–thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing.  相似文献   

6.
A novel aptamer biosensor for cancer cell assay has been reported on the basis of ultrasensitive electrochemical detection. The assay uses the aptamer as a capture probe to recognize and bind the tumor marker on the surface of the cancer cells, forming an aptamer-based sandwich structure for MCF-7 cells detection. Functionalized nanoporous materials, porous graphene oxide/Au composites (GO/Au composites) and porous PtFe alloy have been introduced into the biosensor. Owing to the large surface area and versatile porous structure, the use of nanoporous materials can significantly improve the analysis performance of the biosensors by loading of large amounts of molecules and accelerating diffusion rate. Under the optimized experimental conditions, the proposed aptamer biosensor exhibited excellent analytical performance for MCF-7 cells determination, ranging from 100 to 5.0 × 107 cells mL−1 with the detection limit of 38 cells mL−1. The biosensor showed good selectivity, acceptable stability and reproducibility, and developed a highly sensitive and selective method for cancer cells detection.  相似文献   

7.
An amplified electrochemical impedimetric aptasensor for ochratoxin A (OTA) was developed with picomolar sensitivity. A facile route to fabricate gold nanoparticles covalently bound reduced graphene oxide (AuNPs–rGO) resulted in a large number of well-dispersed AuNPs on graphene sheets with tremendous binding sites for DNA, since the single rGO sheet and each AuNP can be loaded with hundreds of DNA strands. An aptasensor with sandwich model was fabricated which involved thiolated capture DNA immobilized on a gold electrode to capture the aptamer, then the sensing interface was incubated with OTA at a desired concentration, followed by AuNPs–rGO functionalized reporter DNA hybridized with the residual aptamers. By exploiting the AuNPs–rGO as an excellent signal amplified platform, a single hybridization event between aptamer and reporter DNA was translated into more than 107 redox events, leading to a substantial increase in charge-transfer resistance (Rct) by 7∼ orders of magnitude compared with that of the free aptamer modified electrode. Such designed aptasensor showed a decreased response of Rct to the increase of OTA concentrations over a wide range of 1 pg mL−1–50 ng mL−1 and could detect extremely low OTA concentration, namely, 0.3 pg mL−1 or 0.74 pM, which was much lower than that of most other existed impedimetric aptasensors. The signal amplification platform presented here would provide a promising model for the aptamer-based detection with a direct impedimetric method.  相似文献   

8.
A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 106 cells mL−1 with a detection limit of 40 cells mL−1 was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 105 with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.  相似文献   

9.
A new strategy for homogeneous protein detection is developed based on a cucurbit[7]uril (CB[7]) functionalized electrode. The analytical procedure consists of the binding of target protein to its aptamer in the test solution, followed by an exonuclease-catalyzed digestion of methylene blue (MB) tag labeled DNA oligonucleotides. Since CB[7] molecules immobilized on the electrode may efficiently capture the released MB-labeled nucleotides, the MB tags are concentrated to the electrode surface and subsequently yield highly sensitive electrochemical signal, which is related to the concentration of the target protein. The method combines the host–guest properties of CB[7] with the immobilization-free homogeneous assay, providing a powerful tool for protein detection. Taking the detection of osteopontin as an example, the proposed method can have a linear response to the target protein in a range from 50 to 500 ng mL−1 with a detection limit of 10.7 ng mL−1. It can also show high specificity and good reproducibility, and can be used directly for the assay of osteopontin in serum samples.  相似文献   

10.
Haiping Zhou  Jinghe Yang 《Talanta》2009,78(3):809-813
It is found that Al(III) can further enhance the intensity of resonance light scattering (RLS) of the silver nanoparticles (AgNPs) and nucleic acids system. Based on this, a novel method of determination of nucleic acids is proposed in this paper. Under optimum conditions, there are linear relationships between the enhancing extent of RLS and the concentration of nucleic acids in the range of 1.0 × 10−9-1.0 × 10−7 g mL−1, 1.0 × 10−7-2.0 × 10−6 g mL−1 for fish sperm DNA (fsDNA), 1.0 × 10−9-7.0 × 10−8 g mL−1 for calf thymus DNA (ctDNA) and 1.0 × 10−9-1.0 × 10−7 g mL−1 for yeast RNA (yRNA). The detection limits (S/N = 3) of fsDNA, ctDNA and yRNA are 4.1 × 10−10 g mL−1, 4.0 × 10−10 g mL−1 and 4.5 × 10−10 g mL−1, respectively. The studies indicate that the RLS enhancement effect should be ascribed to the formation of AgNPs-Al(III)-DNA aggregations through electrostatic attraction and adsorption bridging action of Al(III). And the sensitivity and stability of the AgNPs-fsDNA system could be enhanced by Al(III).  相似文献   

11.
Due to the ubiquity and essential of the proteins in all living organisms, the identification and quantification of disease-specific proteins are particularly important. Because the conformational change of aptamer upon its target or probe/target/probe sandwich often is the primary prerequisite for the design of an electrochemical aptameric assay system, it is extremely difficult to construct the electrochemical aptasensor for protein assay because the corresponding aptamers cannot often meet the requirement. To circumvent the obstacles mentioned, an electronic channel switching-based (ECS) aptasensor for ultrasensitive protein detection is developed. The essential achievement made is that an innovative sensing concept is proposed: the hairpin structure of aptamer is designed to pull electroactive species toward electrode surface and makes the surface-immobilized IgE serve as a barrier that separates enzyme from its substrate. It seemingly ensures that the ECS aptasensor exhibits most excellent assay features, such as, a detection limit of 4.44 × 10−6 μg mL−1 (22.7 fM, 220 zmol in 10-μL sample) (demonstrating a 5 orders of magnitude improvement in detection sensitivity compared with classical electronic aptasensors) and dynamic response range from 4.44 × 10−6 to 4.44 × 10−1 μg mL−1. We believe that the described sensing concept here might open a new avenue for the detection of proteins and other biomacromolecules.  相似文献   

12.
The preparation of novel Staphylococcus aureus (S. aureus) amperometric immunosensing designs based on the covalent immobilization of RbIgG at gold electrodes using the heterobifunctional cross-linker 3,3-dithiodipropionic acid di(N-succinimidyl ester) (DTSP), are reported. Two different competitive immunosensing configurations have been tested and compared. In the first one, protein A-bearing S. aureus cells and HRP-labelled antiRbIgG compete for immobilized RbIgG binding sites, while in the second case HRP-labelled protein A was used. In both cases, the evaluation of the developed immunosensors performance was accomplished through the monitoring at 0.00 V (vs. Ag/AgCl) of the catalytic current originated after addition of hydrogen peroxide, using tetrathiafulvalene as redox mediator entrapped at the modified electrode surface by cross-linking with glutaraldehyde. Optimization of variables concerning the composition of the immunosensors as well as the detection conditions was carried out in 0.1 M NaAc/0.1 M NaCl buffer of pH 5.6. The configuration that employed antiRbIgG-HRP resulted in better analytical characteristics, with a detection limit of 1.4 × 104 cells mL−1 for S. aureus cells submitted to wall lyses by ultrasonic treatment. This immunosensor design was also evaluated using gold screen-printed electrodes in order to reduce the analysis time and cost. In this case, a limit of detection of 3.7 × 102 cells mL−1 and a dynamic range from 1.3 × 103 to 7.6 × 104 cells mL−1 was obtained. A RSD value of 10.5% was found for the responses to 9.6 × 103S. aureus cells mL−1 obtained with seven different Au/SPEs-immunosensors. These disposable immunosensors were applied to the quantification of S. aureus in milk spiked at two concentration levels, 1.2 × 103 and 4.8 × 103 cells mL−1, with good recoveries.  相似文献   

13.
A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 102 to 3.0 × 104 cells mL−1, with a detection limit of 2.6 × 102 cells mL−1. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL−1. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.  相似文献   

14.
Changlun Tong  Zhou Hu 《Talanta》2007,71(2):816-821
The fluorescence intensity of the enoxacin (ENX)-Tb3+ complex enhanced by DNA was studied. On the basis of this study, an environmentally friendly fluorescence probe of enoxacin-Tb3+ for the determination of single-stranded and double-stranded DNA was developed. Under the optimal conditions, the enhanced fluorescence intensity was in proportion to the concentration of DNA in the range of 2.0 × 10−8 to 2.0 × 10−6 g mL−1 for hsDNA, 1.0 × 10−8 to 1.0 × 10−6 g mL−1 for ctDNA and 5.0 × 10−9 to 1.0 × 10−6 g mL−1 for thermally denatured ctDNA. The detection limits (S/N = 3) were 5.0, 9.0 and 3.0 ng mL−1, respectively. The interaction modes between ENX-Tb3+ and DNA and the mechanism of the fluorescence enhancement were also discussed in details. The experimental results from UV absorption spectra, fluorescence spectra and the competing combination tests between the ENX-Tb3+ complex and EB probe indicated that the possible interaction modes between enoxacin-Tb3+ complex and DNA had at least two different binding modes: the electrostatic binding and the intercalation binding. Additionally, this fluorescence probe was used to study the interaction between heavy metals and DNA.  相似文献   

15.
Miaomiao Gu 《Talanta》2009,80(1):246-1985
Gold nanoparticles (AuNPs) were assembled on the surface of polystyrene (PS) and polyaniline (PANI) core-shell nanocomposite (PS@PANI) for the immobilization of HL-60 leukemia cells to fabricate a cell electrochemical sensor. The immobilized cells exhibited irreversible voltammetric response and increased the electron transfer resistance with a good correlation to the logarithmic value of concentration ranging from 1.6 × 103 to 1.6 × 108 cells mL−1 with a limit of detection of 7.3 × 102 cells mL−1 at 10σ. This biosensor was simple, low cost and disposable, which implied that the PS@PANI/Au composites can regard as the potential applications for clinical applications.  相似文献   

16.
An electrochemiluminescence (ECL) biosensor for simultaneous detection of adenosine and thrombin in one sample based on bifunctional aptamer and N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles (ABEI-AuNPs) was developed. A streptavidin coated gold nanoparticles modified electrode was utilized to immobilize biotinylated bifunctional aptamer (ATA), which consisted of adenosine and thrombin aptamer. The ATA performed as recognition element of capture probe. For adenosine detection, ABEI-AuNPs labeled hybridization probe with a partial complementary sequence of ATA reacted with ATA, leading to a strong ECL response of N-(aminobutyl)-N-(ethylisoluminol) enriched on ABEI-AuNPs. After recognition of adenosine, the hybridization probe was displaced by adenosine and ECL signal declined. The decrease of ECL signal was in proportion to the concentration of adenosine over the range of 5.0 × 10−12–5.0 × 10−9 M with a detection limit of 2.2 × 10−12 M. For thrombin detection, thrombin was assembled on ATA modified electrode via aptamer–target recognition, another aptamer of thrombin tagged with ABEI-AuNPs was bounded to another reactive site of thrombin, producing ECL signals. The ECL intensity was linearly with the concentration of thrombin from 5 × 10−14 M to 5 × 10−10 M with a detection limit of 1.2 × 10−14 M. In the ECL biosensor, adenosine and thrombin can be detected when they coexisted in one sample and a multi-analytes assay was established. The sensitivity of the present biosensor is superior to most available aptasensors for adenosine and thrombin. The biosensor also showed good selectivity towards the targets. Being challenged in real plasma sample, the biosensor was confirmed to be a good prospect for multi-analytes assay of small molecules and proteins in biological samples.  相似文献   

17.
A reagentless signal-on electrochemiluminescence (ECL) biosensor for DNA hybridization detection was developed based on the quenching effect of ferrocene (Fc) on intrinsic cathodic ECL at thin oxide covered glassy carbon (C/CxO1−x) electrodes. To construct the DNA biosensor, molecular beacon (MB) modified with ferrocene (3′-Fc) was attached to a C/CxO1−x electrode via the covalent bound between labeled amino (5′-NH2) and surface functional groups. It was found that the immobilization of the probe on the electrode surface mainly depended on the fraction of surface carbonyl moiety. When a complementary target DNA (cDNA) was present, the stem-loop of MB on the electrode was converted into a linear double-helix configuration due to hybridization, resulting in the moving away of Fc from the electrode surface, and the restoring of the cathodic ECL signal. The restoration of the ECL intensity was linearly changed with the logarithm of cDNA concentration in the range of 1.0 × 10−11 to 7.0 × 10−8 M, and the detection limit was ca. 5.0 pM (S/N = 3). Additionally, single-base mismatched DNA can be effectively discriminated from the cDNA. The great advantage of the biosensor lies in its simplicity and cost-effective with ECL generated from the electrode itself, and no adscititious luminophore is required.  相似文献   

18.
A highly selective electrochemiluminescent biosensor for the detection of target nephrotoxic toxin, ochratoxin A (OTA), was developed using a DNA aptamer as the recognition element and N-(4-aminobutyl)-N-ethylisoluminol (ABEI) as the signal-producing compound. The electrochemiluminescent aptamer biosensor was fabricated by immobilizing aptamer complementary DNA 1 sequence onto the surface of a gold-nanoparticle (AuNP)-modified gold electrode. ABEI-labeled aptamer DNA 2 sequence hybridized to DNA 1 and was utilized as an electrochemiluminescent probe. A decreased electrochemiluminescence (ECL) signal was generated upon aptamer recognition of the target OTA, which induced the dissociation of DNA 2 (ABEI-labeled aptamer electrochemiluminescent probe) from DNA 1 and moved it far away from the electrode surface. Under the optimal conditions, the decreased ECL intensity was proportional to an OTA concentration ranging from 0.02 to 3.0 ng mL-1, with a detection limit of 0.007 ng mL-1. The relative standard deviation was 3.8% at 0.2 ng mL-1 (n = 7). The proposed method has been applied to measure OTA in naturally contaminated wheat samples and validated by an official method. This work demonstrates the combination of a highly binding aptamer with a highly sensitive ECL technique to design an electrochemiluminescent biosensor, which is a very promising approach for the determination of small-molecule toxins.  相似文献   

19.
Multiplex electrochemical detection of two DNA target sequences in one sample using enzyme-functionalized Au nanoparticles (AuNPs) as catalytic labels for was proposed. This DNA sensor was fabricated using a “sandwich” detection strategy, involving two kinds of capture probes DNA immobilized on glassy carbon electrode (GCE), and hybridization with target DNA sequences, which further hybridized with the reporter DNA loaded on the AuNPs. The AuNP contained two kinds of DNA sequences, one was complementary to the target DNA, while the other was noncomplementary to the target. The noncomplementary sequences were linked with horseradish peroxidase (HRP) and alkaline phosphatase (ALP), respectively. Enhanced detection sensitivity was obtained where the AuNPs carriers increased the amount of enzyme molecules per hybridization. Electrochemical signals were generated from the enzymatic products produced from the substrates catalyzed by HRP and ALP. Under optimal conditions, a 33-mer sequence could be quantified over the ranges from 1.5 × 10−13 to 5.0 × 10−12 M with a detection limit of 1.0 × 10−13 M using HRP-AuNP as labels, and a 33-mer sequence could be quantified over the ranges from 4.5 × 10−11 M to 1.0 × 10−9 M with a detection limit of 1.2 × 10−11 M using ALP-AuNP as labels.  相似文献   

20.
Honglan Qi 《Talanta》2007,72(3):1030-1035
A sensitive electrochemical detection of DNA hybridization using a paste electrode assembled by multi-wall carbon nanotubes (MWNT) and immobilizing DNA probe within electropolymerized polypyrrole (ppy) was developed. The detection approach relied on entrapping of DNA probe within electropolymerized ppy film on the MWNT paste electrode and monitoring the current change generated from an electroactive intercalator of ethidium bromide (EB) after DNA hybridization. As a consequence of DNA hybridization, significant changes in the current of EB intercalated with double-stranded DNA (ds-DNA) on the MWNT paste electrode were observed. Based on the response of EB, only the complementary DNA sequence gave an obvious current signal compared with the five-point mismatched and non-complementary sequences. The oxidation peak current was linearly related to the logarithm of the concentration of the complementary DNA sequence from 1.0 × 10−10 to 1.0 × 10−8 M with a detection limit of 8.5 × 10−11 M. This work demonstrates that the incorporation of MWNT paste electrode with electropolymerization is a promising strategy of functional interfaces for the immobilization of biological recognition elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号