共查询到20条相似文献,搜索用时 15 毫秒
1.
A new analytic approximate technique for non-linear problems, namely the homotopy analysis method, is employed to propose an approach for free oscillations of self-excited systems. Different from perturbation methods on this topic, this approach does not depend upon any small/large parameters at all and therefore is valid for free oscillations of all self-excited systems. Besides, unlike other analytic techniques, this approach provides us with a convenient way to control the convergence of approximation series and adjust convergence regions when necessary. Two examples are employed to illustrate the validity and flexibility of this approach. 相似文献
2.
The currently developed analytic technique known as the homotopy analysis method is employed to propose a new approach for free oscillations of positively damped systems with algebraically decaying amplitude. In contrast to perturbation techniques, this approach is valid even for damped systems without any small/large parameters. Besides, unlike other analytic techniques, this approach itself provides us with a convenient way to adjust and control convergence of approximation series. Some typical examples are employed to illustrate its validity, effectiveness and flexibility. 相似文献
3.
The general conditions, obtained in Lacarbonara and Rega (Int. J. Non-linear Mech. (2002)), for orthogonality of the non-linear normal modes in the cases of two-to-one, three-to-one, and one-to-one internal resonances in undamped unforced one-dimensional systems with arbitrary linear, quadratic and cubic non-linearities are here investigated for a class of shallow symmetric structural systems. Non-linear orthogonality of the modes and activation of the associated interactions are clearly dual problems. It is known that an appropriate integer ratio between the frequencies of the modes of a spatially continuous system is a necessary but not sufficient condition for these modes to be non-linearly coupled. Actual activation/orthogonality of the modes requires the additional condition that the governing effective non-linear interaction coefficients in the normal forms be different/equal to zero. Herein, a detailed picture of activation/orthogonality of bimodal interactions in buckled beams, shallow arches, and suspended cables is presented. 相似文献
4.
Real world mechanical systems present non-linear behavior and in many cases simple linearization in modeling the system would not lead to satisfactory results. Coulomb damping and cubic stiffness are typical examples of system parameters currently used in non-linear models of mechanical systems. This paper uses orthogonal functions to represent input and output signals. These functions are easily integrated by using a so-called operational matrix of integration. Consequently, it is possible to transform the non-linear differential equations of motion into algebraic equations. After mathematical manipulation the unknown linear and non-linear parameters are determined. Numerical simulations, involving single and two degree-of-freedom mechanical systems, confirm the efficiency of the above methodology. 相似文献
5.
We present a new auxiliary variable formulation of high-order radiation boundary conditions for the numerical simulation of waves on unbounded domains. Retaining the flexibility of Higdon’s wave-product conditions, our approach allows arbitrary-order implementations. When applied to the scalar wave equation, the proposed method leads to balanced, symmetrizable systems of wave equations on the boundary. It can also be extended to first-order systems. Corner compatibility conditions are derived for the auxiliary variable equations. They are shown experimentally to lead to stable, accurate results. 相似文献
6.
The non-linear modal properties of a vibrating 2-DOF system with non-smooth (piecewise linear) characteristics are investigated; this oscillator can suitably model beams with a breathing crack or systems colliding with an elastic obstacle. The system having two discontinuity boundaries is non-linearizable and exhibits the peculiar feature of a number of non-linear normal modes (NNMs) that are greater than the degrees of freedom. Since the non-linearities are concentrated at the origin, its non-linear frequencies are independent of the energy level and uniquely depend on the damage parameter. An analysis of the NNMs has been performed for a wide range of damage parameter by employing numerical procedures and Poincaré maps. The influence of damage on the non-linear frequencies has been investigated and bifurcations characterized by the onset of superabundant modes in internal resonance, with a significantly different shape than that of modes on fundamental branch, have been revealed. 相似文献
7.
Using a bistable oscillator described by a Duffing equation as an example, resonances caused by a biharmonical external force with two different frequencies (the so-called vibrational resonances) are considered. It is shown that, in the case of a weakly damped oscillator, these resonances are conjugate; they occur as either the low and high frequency is varied. In addition, the resonances occur as the amplitude of the high-frequency excitation is varied. It is also shown that the high-frequency action induces the change in the number of stable steady states; these bifurcations are also conjugate, and are the cause of the seeming resonance in an overdamped oscillator. 相似文献
8.
Transmissibility is a well-known linear system concept that has been widely applied in the diagnosis of damage in various engineering structural systems. However, in engineering practice, structural systems can behave non-linearly due to certain kinds of damage such as, e.g., breathing cracks. In the present study, the concept of transmissibility is extended to the non-linear case by introducing the Transmissibility of Non-linear Output Frequency Response Functions (NOFRFs). The NOFRFs are a concept recently proposed by the authors for the analysis of non-linear systems in the frequency domain. A NOFRF transmissibility-based technique is then developed for the detection and location of both linear and non-linear damage in MDOF structural systems. Numerical simulation results verify the effectiveness of the new technique. Experimental studies on a three-storey building structure demonstrate the potential to apply the developed technique to the detection and location of damage in practical MDOF engineering structures. 相似文献
9.
The aim of the present paper is to study the effects of non-linear devices on the reliability-based optimal design of structural systems subject to stochastic excitation. One-dimensional hysteretic devices are used for modelling the non-linear system behavior while non-stationary filtered white noise processes are utilized to represent the stochastic excitation. The reliability-based optimization problem is formulated as the minimization of the expected cost of the structure for a specified failure probability. Failure is assumed to occur when any one of the output states of interest exceeds in magnitude some specified threshold level within a given time duration. Failure probabilities are approximated locally in terms of the design variables during the optimization process in a parallel computing environment. The approximations are based on a local interpolation scheme and on an efficient simulation technique. Specifically, a subset simulation scheme is adopted and integrated into the proposed optimization process. The local approximations are then used to define a series of explicit approximate optimization problems. A sensitivity analysis is performed at the final design in order to evaluate its robustness with respect to design and system parameters. Numerical examples are presented in order to illustrate the effects of hysteretic devices on the design of two structural systems subject to earthquake excitation. The obtained results indicate that the non-linear devices have a significant effect on the reliability and global performance of the structural systems. 相似文献
12.
This paper uses Poincaré formalism to extend the Levi-Civita theorem to cope with nonholonomic systems admitting certain invariant
relations whose equations of motion involve constraint multipliers. Sufficient conditions allowing such extension are obtained
and, as an application of the theory a generalization of Routh's motion is presented. 相似文献
13.
Many machine elements in common engineering use exhibit the characteristic of “hysteresis springs”. Plain and rolling element bearings that are widely used in motion guidance of machine tools are typical examples. The study of the non-linear dynamics caused by such elements becomes imperative if we wish to achieve accurate control of such machines. This paper outlines the properties of rate-independent hysteresis and shows that the calculation of the free response of a single-degree-of-freedom (SDOF) mass-hysteresis-spring system is amenable to an exact solution. The more important issue of forced response is not so, requiring other methods of treatment. We consider the approximate describing function method and compare its results with exact numerical simulations. Agreement is good for small excitation amplitudes, where the system approximates to a linear mass-spring-damper system, and for very large amplitudes, where some sort of mass-line is approached. Intermediate values however, show high sensitivity to amplitude variations, and no regular solution is obtained by either approach. This appears thus to be an inherent property of the system pointing to the need for developing further analysis methods. 相似文献
14.
Hagedorn's theorem on instability [Arch. Rational Mech. Anal. 58 (1976) 1], deduced from Jacobi's form of Hamilton's principle, refers to scleronomic mechanical systems. In this paper we shall prove that Hagedorn's methodology can be generalized to a class of rheonomic mechanical systems with differential equations of motion which allow the existence of Painlevé's integral of energy. The application of this methodology to the case of rheonomic systems which allow, together with Painlevé's integral, cyclic integrals, as well as to the mechanical systems having resultant motion, with prescribed transport motion, and, finally, to the systems having Mayer's rheonomic potential, are also considered. Obtained results are illustrated by an example. 相似文献
15.
The method of integration of dynamical systems admitting non-linear superpositions is applied to four-dimensional non-linear dynamical systems. All four-dimensional dynamical systems admitting non-linear superpositions with four-dimensional Vessiot-Guldberg-Lie algebras are classified into 160 standard forms. The integration method is described and illustrated. 相似文献
16.
Approximations of the resonant non-linear normal modes of a general class of weakly non-linear one-dimensional continuous systems with quadratic and cubic geometric non-linearities are constructed for the cases of two-to-one, one-to-one, and three-to-one internal resonances. Two analytical approaches are employed: the full-basis Galerkin discretization approach and the direct treatment, both based on use of the method of multiple scales as reduction technique. The procedures yield the uniform expansions of the displacement field and the normal forms governing the slow modulations of the amplitudes and phases of the modes. The non-linear interaction coefficients appearing in the normal forms are obtained in the form of infinite series with the discretization approach or as modal projections of second-order spatial functions with the direct approach. A systematic discussion on the existence and stability of coupled/uncoupled non-linear normal modes is presented. Closed-form conditions for non-linear orthogonality of the modes, in a global and local sense, are discussed. A mechanical interpretation of these conditions in terms of virtual works is also provided. 相似文献
17.
Abstract. The results of an experimental study of DDT in mixtures with regular and irregular detonation cellular structures are presented.
Experiments were carried out in a tube 174 mm i. d. with obstacles (blockage ratios were 0.1, 0.3, and 0.6). Mixtures used
were hydrogen–air and stoichiometric hydrogen–oxygen diluted with , Ar, and He. The critical conditions for DDT are shown to depend on the regularity of the cellular structure of test mixtures.
The critical values of the cell sizes in Ar- and He-diluted mixtures are shown to be significantly smaller than those in -diluted mixtures. This means that systems with a highly regular detonation cellular structure have far less capacity for
undergoing DDT compared to irregular ones with the same values of detonation cell sizes.
Received 18 November 1999 / Accepted 15 May 2000 相似文献
18.
We introduce a novel numerical approach for the simulation of soft particles interacting via frictional contacts. This approach is based on an implicit formulation of the Material Point Method, allowing for large particle deformations, combined with the Contact Dynamics method for the treatment of unilateral frictional contacts between particles. This approach is both precise due to the treatment of contacts with no regularization and artificial damping parameters, and robust due to implicit time integration of both bulk degrees of freedom and relative contact velocities at the nodes representing the contact points. By construction, our algorithm is capable of handling arbitrary particle shapes and deformations. We illustrate this approach by two simple 2D examples: a Hertz contact and a rolling particle on an inclined plane. We also investigate the compaction of a packing of circular particles up to a solid fraction well above the jamming limit of hard particles. We find that, for the same level of deformation, the solid fraction in a packing of frictional particles is above that of a packing of frictionless particles as a result of larger particle shape change. 相似文献
19.
A family of random diffeomorphisms on a manifold M is said to be a random dynamical system or RDS if it has the so-called cocycle property. The multiplicative ergodic theorem assigns d (=dim M) Lyapunov exponents to every invariant measure of the system. Take the maximum of the leading exponents associated with the various invariant measures. The resulting number is said to be the maximal exponent of the system. The minimal exponent is defined in a similar fashion. It is shown that the minimal exponent of an RDS on a compact manifold is negative, provided not all invariant measures are determined by the future of . A similar statement relates the maximal exponent with the past of . We proceed by introducing Markov systems and Markov measures. This notion covers flows of stochastic differential equations as well as products of random diffeomorphisms in Markovian dependence, in particular, products of iid diffeomorphisms. Markov measures are characterized by the fact that they are functionals of the past. Consequently, if there exists a non-Markovian invariant measure, then the maximal exponent does not vanish. Typically, Markov systems do have non-Markovian invariant measures. Finally, for linear systems we recover results of Ledrappier. In particular, these results provide another proof of Furstenberg's theorem on the positivity of the leading exponent of a product of iid unimodular matrices. 相似文献
20.
A general method to obtain approximate solutions for the random response of non-linear systems subjected to both additive and multiplicative Gaussian white noises is presented. Starting from the concept of linearization, the proposed method of “Probabilistic Linearization” (PL) is based on the replacement of the Fokker–Planck equation of the original non-linear system with an equivalent one relative to a linear system subjected to additive excitation only. By means of the general scheme of the weighted residuals, the unknown coefficients of the equivalent system are determined. Assuming a Gaussian probability density function of the response process and by choosing the weighting functions in a suitable way, the equivalence of the proposed method, called “Gaussian Probabilistic Linearization” (GPL), with the “Gaussian Stochastic Linearization” (GSL) applied to the coefficients of the Itô differential rule is evidenced. In addition, the generalization of the proposed method, called “Generalized Gaussian Probabilistic Linearization” (GGPL), is presented. Numerical applications show as, varying the choice of the weighting functions, it is possible to obtain different linearizations, with a variable degree of accuracy. For the two examples considered, different suitable combinations of the weighting functions lead to different equivalent linear systems, all characterized by the exact solution in terms of variance. 相似文献
|