首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Some azido‐ and iminophosphorane derivatives of 3,6‐dichloro‐ and 3,4,5,6‐tetrachloropyridazine were synthesized and studied by means of NMR measurements. Based on multinuclear data (chemical shifts, coupling constants) for compounds containing the azide group, no potentially possible tetrazole–azide equilibrium can be observed, even under acidic conditions. An unusual substitution of a chlorine atom (in position 4) of tetrachloropyridazine in the reaction with hydrazine was demonstrated by NMR measurements of two newly synthesized compounds containing azido‐ and iminophosphorane groups. Using multinuclear magnetic resonance data, the sites of ethylation and protonation of azido‐ and iminophosphorane derivatives of chloropyridazines were established. In the case of the tetrazolopyridazines, ethylation occurs at the N1′ and N2′ atoms, whereas for monocyclic compounds it takes place at the N1 and/or N2 atoms of the pyridazine ring. Preferred sites of protonation are the N1′ atom of the tetrazole ring and the N1 atom of the pyridazine ring. Moreover, the structures of potassium salts of 6‐(3‐cyano‐1‐triazeno)tetrazolo[1,5‐b] pyridazine and its amido derivative were established using NMR data, especially 15N NMR chemical shifts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
1,5-Diamino-1H-tetrazole (2, DAT) can easily be protonated by reaction with strong mineral acids, yielding the poorly investigated 1,5-diaminotetrazolium nitrate (2a) and perchlorate (2b). A new synthesis for 2 is introduced that avoids lead azide as a hazardous byproduct. The reaction of 1,5-diamino-1H-tetrazole with iodomethane (7a) followed by the metathesis of the iodide (7a) with silver nitrate (7b), silver dinitramide (7c), or silver azide (7d) leads to a new family of heterocyclic-based salts. In all cases, stable salts were obtained and fully characterized by vibrational (IR, Raman) spectroscopy, multinuclear NMR spectroscopy, mass spectrometry, elemental analysis, X-ray structure determination, and initial safety testing (impact and friction sensitivity). Most of the salts exhibit good thermal stabilities, and both the perchlorate (2b) and the dinitramide (7c) have melting points well below 100 degrees C, yet high decomposition onsets, defining them as new (7c), highly energetic ionic liquids. Preliminary sensitivity testing of the crystalline compounds indicates rather low impact sensitivities for all compounds, the highest being that of the perchlorate (2b) and the dinitramide (7c) with a value of 7 J. In contrast, the friction sensitivities of the perchlorate (2b, 60 N) and the dinitramide (7c, 24 N) are relatively high. The enthalpies of combustion (Delta(c)H degrees ) of 7b-d were determined experimentally using oxygen bomb calorimetry: Delta(c)H degrees (7b) = -2456 cal g(-)(1), Delta(c)H degrees (7c) = -2135 cal g(-)(1), and Delta(c)H degrees (7d) = -3594 cal g(-)(1). The standard enthalpies of formation (Delta(f)H degrees ) of 7b-d were obtained on the basis of quantum chemical computations using the G2 (G3) method: Delta(f)H degrees (7b) = 41.7 (41.2) kcal mol(-)(1), Delta(f)H degrees (7c) = 92.1 (91.1) kcal mol(-)(1), and Delta(f)H degrees (7d) = 161.6 (161.5) kcal mol(-)(1). The detonation velocities (D) and detonation pressures (P) of 2b and 7b-d were calculated using the empirical equations of Kamlet and Jacobs: D(2b) = 8383 m s(-)(1), P(2b) = 32.2 GPa; D(7b) = 7682 m s(-)(1), P(7b) = 23.4 GPa; D(7c) = 8827 m s(-)(1), P(7c) = 33.6 GPa; and D(7d) = 7405 m s(-)(1), P(7d) = 20.8 GPa. For all compounds, a structure determination by single-crystal X-ray diffraction was performed. 2a and 2b crystallize in the monoclinic space groups C2/c and P2(1)/n, respectively. The salts of 7 crystallize in the orthorhombic space groups Pna2(1) (7a, 7d) and Fdd2 (7b). The hydrogen-bonded ring motifs are discussed in the formalism of graph-set analysis of hydrogen-bond patterns and compared in the case of 2a, 2b, and 7b.  相似文献   

3.
3-Methyl-3H-pyrazolo[1,5-d]tetrazoles 2 and 3-methyl-6-phenyl-3H-1,2,4-triazolo[1,5-d]tetrazole (4) have been unequivocally synthesized by annulation of the tetrazole moiety to the pyrazole resp. 1,2,4-triazole system. The constitution of some N-methyl substituted azolotetrazoles, formerly described as 3-methyl-3H-pyrazolo[1,5-d]tetrazoles 2, 3-methyl-6-phenyl-3H-1,2,4-triazolo[1,5-d]tetrazole (4) and 1-methyl-6-phenyl-1H-1,2,4-triazolo[4,3-d]tetrazole (5), has to be revised in favour of the corresponding mesoionic 2-methyl derivatives 2′, 4′, 5′. The structures of 3-methyl-3H- as well as of 2-methyl-2H-pyrazolo[1,5-d]tetrazole derivatives 2a, 2c, 2′a have been determined by X-ray analyses. The azapentalenic system is aromatic in all three measured compounds and mesoionic in the case of the 2-methyl-2H- substitution pattern. The phenyl and ester substituents are coplanar with the azapentalene system. 3-, 2-, and 1-Methylpyrazolo[1,5-d]tetrazoles exhibit different behaviour when allowed to react with stannous chloride or sodium ethoxide. Azolotetrazoles with a methyl substituent at N-1, N-2 or N-3 of the tetrazole moiety can be distinguished by a combination of 1H and 13C nmr with respect to the chemical shifts of the N-methyl group and the bridgehead carbon. Results of semiempirical calculations of the pyrazolo[1,5-d]tetrazole anion and of its N-methyl derivatives are discussed.  相似文献   

4.
The crystal and molecular structures of 1,5-diamino-1H-1,2,3,4-tetrazolium picrate (DATP) were determined by X-ray diffraction analysis. The tetrazolium cation in DATP has a structure with protonated N4 atom of the ring. Two amino groups in the cation are found to be rather different. The 5-amino group lies in the plane of the tetrazole ring and valence angles around the N atom are close to 120°, which indicates sp2 hybridization of atomic orbital of the nitrogen atom. In contrast, valence angles around the N atom of the 1-amino group are close to tetrahedral angle, which suggests sp3 hybridization. The exocyclic C-N bond in the cation is substantially shorter than that in 1,5-diaminotetrazole. The obtained results indicate a conjugation between the π-system of the tetrazole ring and the 5-amino group. The results of ab initio calculations of electronic structure and relative stability for various tautomeric forms of protonated 1,5-diaminotetrazole using MP2/6-31G* and B3LYP/6-31G* levels of theory are in a good agreement with X-ray data and show that there are differences in σ-electron overlap populations for the C-N bonds in the cation in DATP, while π-electrons are delocalized.  相似文献   

5.
3,4,5-Triamino-1,2,4-triazole (guanazine, 1) can be readily methylated with methyl iodide yielding methylguanazinium iodide (2). Salts containing the novel methylguanazinium cation with energetic anions were synthesised by metathesis reactions with silver azide (3), silver nitrate (4), silver perchlorate (5), sodium 5,5'-azotetrazolate (6), silver 5-nitrotetrazolate (7) and silver dinitramide (8), yielding a new family of heterocycle-based salts, which were fully characterised by analytical (mass spectrometry and elemental analysis) and spectroscopic methods (IR, Raman and NMR). In addition, the molecular structures of all compounds were confirmed by X-ray analysis, revealing extensive hydrogen-bonding in the solid state and densities between 1.399 (3) and 1.669 g cm(-3) (5). The hydrogen-bonded ring motifs are discussed in the formalism of graph-set analysis for hydrogen-bond patterns and compared to each other. Preliminary sensitivity testing of the crystalline compounds indicate surprisingly low sensitivities to both friction and impact, the highest friction and shock sensitivity being found for the perchlorate (5, 220 N) and the dinitramide (8, 20 J) salts, respectively. In addition, DSC analysis was used to assess the thermal stabilities of the compounds: 3-6 melt above 200 degrees C with concomitant decomposition, whereas 7 and 8 have clearly defined melting points at 162 and 129 degrees C, respectively, and with decomposition occurring about 30 degrees C above the melting point. Lastly all compounds have positive calculated heats of formation between 336 (4) and 4070 kJ kg(-1) (6) and calculated detonation velocities in the range between 8330 (7) and 8922 m s(-1) (6) making them of interest as new highly energetic materials with low sensitivity.  相似文献   

6.
Density functional theory calculations at the B3LYP/6-31+G^** and B3LYP/6-311++G ^** levels were perfonned on thermal decomposition of 5,5′-bis(tetrazole)-1 ,r-diolate(TKX-50) anion with an intramolecular oxygen transfer being an initial step. Tlie results show that the intramolecular oxygen transfers are the rate-limiting steps for the decomposition of title anion with activation energies being in the range of 287-328 kJ/mol. Judged by the nucleus- independent chemical shift values, the formation of antiaromatic ring in transition state or the decrease of aromaticity of the tetrazole ring of the reactant makes somewhat contribution to the high potential energies of the rate-limiting transition states. However, the activation energies of the following N2 elimination tlirough various pathways are in a low range of 136-166 kJ/mol. The tetrazole ring acts as an electron donor or acceptor in difierent pathways to assist the bond nipture or group elimination. The rate constants in a temperature range of 500-2000 K for all the intramolecular oxygen transferring reactions were obtained. The corresponding linear relationships between InA and 1/T were established.  相似文献   

7.
Two general methods for the selective incorporation of an (15)N-label in the azole ring of tetrazolo[1,5-b][1,2,4]triazines and tetrazolo[1,5-a]pyrimidines were developed. The first approach included treatment of azinylhydrazides with (15)N-labeled nitrous acid, and the second approach was based on fusion of the azine ring to [2-(15)N]-5-aminotetrazole. The synthesized compounds were studied by (1)H, (13)C, and (15)N NMR spectroscopy in both DMSO and TFA solution, in which the azide-tetrazole equilibrium is shifted to tetrazole and azide forms, respectively. Incorporation of the (15)N-label led to the appearance of (13)C-(15)N J coupling constants (J(CN)), which can be measured easily using either 1D (13)C spectra with selective (15)N decoupling or with amplitude modulated 1D (13)C spin-echo experiments with selective inversion of the (15)N nuclei. The observed J(CN) patterns permit unambiguous determination of the type of fusion between the azole and azine rings in tetrazolo[1,5-b][1,2,4]triazine derivatives. Joint analysis of J(CN) patterns and (15)N chemical shifts was found to be the most efficient way to study the azido-tetrazole equilibrium.  相似文献   

8.
1,5-diamino-4-methyltetrazolium dinitramide   总被引:4,自引:0,他引:4  
The highly friction-sensitive 1,5-diamino-4-methyltetrazolium dinitramide was synthesized by a metathetical reaction of the corresponding iodide and silver dinitramide. An intriguing interaction of one nitro group with the tetrazolium cation was found as a crystal structure determining feature (X-ray determination), and the chemical bond is discussed on the basis of the theory of atoms in molecules (AIM).  相似文献   

9.
An air‐stable, highly active and versatile method for C─N bond forming reactions is reported. Under mild conditions using a highly reusable support‐free Cu(II)–salen complex, structurally diverse N ‐aryl‐substituted compounds were obtained via direct C─N bond forming reaction of HN‐heterocycles with aryl iodides or three‐component C─N bond forming reaction of 2‐bromobenzaldehyde, aniline derivatives and sodium azide in good to excellent yields. C─N bond forming reaction for benzimidazole derivatives was also performed in the presence of the catalyst under ambient conditions. A series of hybrid benzimidazoles bearing morpholine, tetrazole and quinoxaline backbones were produced using this method. All reactions were performed in short times under air. The Cu(II) catalyst could be reused up to eight times in the direct cross‐coupling reaction of 9H –carbazole with iodobenzene without any decrease in its catalytic activity.  相似文献   

10.
The reaction of cerium(IV) ammonium nitrate (CAN) with a range of N-(p-anisyl)azoles in acetonitrile or methanol solvents leads to N-dearylation releasing the parent NH-azole and p-benzoquinone in comparable yields. The scope and limitations of the reaction are explored. It was successful with 1-(p-anisyl)pyrazoles, 2-(p-anisyl)-1,2,3-triazoles, 2-(p-anisyl)-2H-tetrazoles, and 1-(p-anisyl)pentazole. The dearylation renders the p-anisyl group as a potentially useful N-protecting group in azole chemistry. The azole released in solution from 1-(p-anisyl)pentazole is unstable HN5, the long-sought parent pentazolic acid. p-Anisylpentazole samples were synthesized with combinations of one, two, and three 15N atoms at all positions of the pentazole ring. The unstable HN5/N5- produced at -40 degrees C did not build up in the solution but degraded to azide ion and nitrogen gas with a short lifetime. The 15N-labeling of the N3- ion obtained from all samples proved unequivocally that it came from the degradation of HN5 (tautomeric forms) and/or its anion N5- in the solution.  相似文献   

11.
Biphenyl tetrazole ring is an important component of the Sartan family of novel drugs. 4′-Bromomethyl-2-(N-trityl-1H-tetrazol-5-yl)biphenyl was synthesized in this article from 4′-methyl-2-cyano-biphenyl through three steps. 4′-Methyl-2-cyano-biphenyl was reacted with azide ions with the help of ammonium chloride as catalyst in an autoclave with high conversion to afford the tetrazole compounds in 70.6% yield. After being protected by the trityl group with 92.6% yield, 4′-methyl-2-(N-trityl-1H-tetrazol-5-yl) biphenyl was brominated with N-bromosuccinimide (NBS) in cyclohexane with 2,2′-azo-isobutyronitrile (AIBN) acting as an initiator to provide the title compound in 83.8% yield.  相似文献   

12.
The kinetic regularities of the thermal decomposition of dinitramide in aqueous solutions of HNO3, in anhydrous acetic acid, and in several other organic solvents were studied. The rate of the decomposition of dinitramide in aqueous HNO3 is determined by the decomposition of mixed anhydride of dinitramide and nitric acid (N4O6) formed in the solution in the reversible reaction. The decomposition of the anhydride is a reason for an increase in the decomposition rates of dinitramide in solutions of HNO3 as compared to those in solutions in H2SO4 and the self-acceleration of the process in concentrated aqueous solutions of dinitramide. The increase in the decomposition rate of nondissociated dinitramide compared to the decomposition rate of the N(NO2)2 anion is explained by a decrease in the order of the N−NO2 bond. The increase in the rate constant of the decomposition of the protonated form of dinitramide compared to the corresponding value for neutral molecules is due to the dehydration mechanism of the reaction. For Part 1, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 41–47, January, 1998.  相似文献   

13.
The three‐component reaction of isocyanides 1 , carbodiimides 2 , and trimethylsilyl azide ( 3 ) occurs at room temperature, and the produced 1,5‐disubstituted 1H‐tetrazole derivatives 4 are formed in 81–98% yields (Scheme 1, Table). The reaction proceeds smoothly and cleanly under mild conditions, and no side reactions are observed.  相似文献   

14.
It has been shown that amino derivatives of sulfanilamide, and also some functionally substituted primary arylamines and cycloalkylamines, undergo heterocyclization with triethyl orthoformate and sodium azide with the formation of 1-monosubstituted tetrazoles. Primary amines of the azole series, 5-aminotetrazole, 5-amino-1-methyltetrazole, 4-amino-1,2,4-triazole, and also less basic arylamines (4-fluoro-3-nitroaniline, 2,6-dibromo-4-nitroaniline) did not react. An efficient method of introducing an amino group into position C(5) of the tetrazole ring of 1-aryltetrazoles is proposed, based on alkaline decomposition of the tetrazole ring and heterocyclization of the resulting N-arylcyanamides on interaction with ammonium azide generated in situ. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1174–1179, August, 2005.  相似文献   

15.
A method for the synthesis of polypeptides modified with a tetrazole ring at the N-terminus is described. Reaction of the N-terminal amino group of solid-supported peptides with arylisothiocyanates generates thiourea intermediates, which upon treatment with Mukaiyama's reagent (2-chloro-1-methylpyridinium iodide) generate electrophilic carbodiimide functionality. Trapping by the azide anion and electrocyclization of the intermediate imidoylazide generates an aryl-substituted 5-aminotetrazole at the N-terminus of the peptide. To prevent competitive cyclization of a neighboring amide N-H into the carbodiimide, there should not be a free N-H at the [X-1] position relative to the activated carbodiimide. Protection of the N-H group at this position or incorporation of a secondary amino acid is thus required for optimal tetrazole formation. Cleavage from the resin releases the hybrid molecules incorporating a 5-aminotetrazole ring conjugated onto a peptidic fragment.  相似文献   

16.
2-Triphenylphosphanimino-4-azidotetrazolo[5,1-a]-[1,3,5]triazine (6) was obtained by reaction of 2,4,6-triazido-1,3,5-triazine (1) with 1 equiv of triphenylphosphane. Raman and X-ray data revealed that only one azide group formed a tetrazole ring system whereas the second azide group did not undergo ring closure. To investigate the equilibrium between the tetrazole isomer and the open-chain azide structure for these and related species, (31)P NMR studies were carried out. The obtained spectra displayed an equilibrium between the tetrazole and the open-chain azide isomers. 2,4,6-Tris(triphenylphosphanimino)-1,3,5-triazine (4) was prepared by treatment of 1 with 3 equiv of triphenylphosphane, and its X-ray structure is discussed. On the basis of PM3 semiempirical and density functional calculations, the reaction of 1 with triphenylphosphane was studied. The thermodynamics of different isomerization reactions and the activation barriers to cyclization were estimated.  相似文献   

17.
Kinetic regularities of thermal decomposition of dinitramide in aqueous and sulfuric acid solutions were studied in a wide temperature range. The rate of the thermal decomposition of dinitramide was established to be determined by the rates of decomposition of different forms of dinitramide as the acidity of the medium increases: first, N(NO2) anions, then HN(NO2)2 molecules, and finally, protonated H2N(NO2)2 + cations. The temperature dependences of the rate constants of the decomposition of N(NO2) (k an) and HN(NO2)2 (kac) and the equilibrium constant of dissociation of HN(NO2)2 (K a) were determined:k an=1.7·1017 exp(−20.5·103/T), s−1,kac=7.9·1016 exp(−16.1·103/T), s−1, andK a=1.4·10 exp(−2.6·103/T). The temperature dependences of the decomposition rate constant of H2N(NO2)2 + (k d) and the equilibrium constant of the dissociation of H2N(NO2)2 + (K d) were estimated:k d=1012 exp(−7.9·103/T), s−1 andK d=1.1 exp(6.4·103/T). The kinetic and thermodynamic constants obtained make it possible to calculate the decomposition rate of dinitramide solutions in a wide range of temperatures and acidities of the medium. In this series of articles, we report the results of studies of the thermal decomposition of dinitramide performed in 1974–1978 and not published previously. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2129–2133, December, 1997.  相似文献   

18.
2-quinolylcarbene 23 and 1-isoquinolylcarbene 33 are generated by flash vacuum thermolysis (FVT) of the corresponding triazolo[1,5-a]quinoline and triazolo[5,1-a]isoquinoline 19 and 29, as well as 2-(5-tetrazolyl)quinoline and 1-(5-tetrazolyl)isoquinoline 20 and 30, respectively. These carbenes rearrange to 1- and 2-naphthylnitrene 21 and 31, respectively, and the nitrenes are also generated by FVT of 1- and 2-naphthyl azides 18 and 28. The products of FVT of both the nitrene and carbene precursors are the 2- and 3-cyanoindenes 26 and 27 together with the nitrene dimers, viz. azonaphthalenes 25 and 35, and the H-abstraction products, aminonaphthalenes 24 and 34. All the azide, triazole, and tetrazole precursors yield 3-cyanoindene 26 as the principal ring contraction product under conditions of low FVT temperature (340-400 degrees C) and high pressure (1 Torr N(2) as carrier gas for the purpose of collisional deactivation). This ring contraction reaction is strongly subject to chemical activation, which caused extensive isomerization of 3-cyanoindene to 2-cyanoindene under conditions of low pressure (10(-3) Torr). 2-Cyanoindene is calculated to be ca. 1.7 kcal/mol below 3-cyanoindene in energy; accordingly, high-temperature FVT of these cyanoindenes always gives mixtures of the two compounds with the 2-cyano isomer dominating. Photolysis of trizolo[1,5-a]quinoline 19 and triazolo[5,1-a]isoquinoline 29 in Ar matrixes causes partial ring opening to the corresponding 2-diazomethylquinoline 19' and 1-diazomethylisoquinoline 29'. The photolysis of the former gives rise to a small amount of the cyclic ketenimine 22, the intermediate connecting 2-quinolylcarbene and 1-naphthylnitrene.  相似文献   

19.
The recently synthesized ammonium dinitramide (ADN) is an ionic compound containing the ammonium ion and a new oxide of nitrogen, the dinitramide anion (O2N? N? NO2?). ADN has been investigated using high-energy xenon atoms to sputter ions directly from the surface of the neat crystalline solid. Tandem mass spectrometric techniques were used to study dissociation pathways and products of the sputtered ions. Among the sputtered ionic products were NH4+, NO+, NO2?, N2O2?, N2O, N3O4? and an unexpected high abundance of NO3?. Tandem mass spectra of the dinitramide anion reveal the uncommon situation where a product ion (NO3?) is formed in high relative abundance from metastable parent ions but is formed in very low relative abundance from collisionally activated parent ions. It is proposed that the nitrate anion is formed in the gas phase by a rate-determining isomerization of the dinitramide anion that proceeds through a four-centered transition state. The formation of the strong gas-phase acid, dinitraminic acid (HN3O4), the conjugate acid of the dinitramide anion, was observed to occur by dissociation of protonated ADN and by dissociation of ADN aggregate ions with the general formula [NH4(N(NO2)2)n] NH4+, where n = 1–30.  相似文献   

20.
5‐(Tetrazol‐1‐yl)‐2H‐tetrazole ( 1 ), or 1,5′‐bistetrazole, was synthesized by the cyclization of 5‐amino‐1H‐tetrazole, sodium azide and triethyl orthoformate in glacial acetic acid. A derivative of 1 , 2‐methyl‐5‐(tetrazol‐1‐yl)tetrazole ( 2 ) can be obtained by this method starting from 5‐amino‐2‐methyl‐tetrazole. Furthermore, selected salts of 1 with nitrogen‐rich and metal (alkali and transition metal) cations, including hydroxylammonium ( 4 ), triaminoguanidinium ( 5 ), copper(I) ( 8 ) and silver ( 9 ), as well as copper(II) complexes of both 1 and 2 were prepared. An intensive characterization of the compounds is given, including vibrational (IR, Raman) and multinuclear NMR spectroscopy, mass spectrometry, DSC and single‐crystal X‐ray diffraction. Their sensitivities towards physical stimuli (impact, friction, electrostatic) were determined according to Bundesamt für Materialforschung (BAM) standard methods. Energetic performance (detonation velocity, pressure, etc.) parameters were calculated with the EXPLO5 program, based on predicted heats of formation derived from enthalpies computed at the CBS‐4M level of theory and utilizing the atomization energy method. From the analytical and calculated data, their potential as energetic materials in different applications was evaluated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号