首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ternary thallium chalcogenides of the general formula Tl(4)MQ(4) (M = Zr or Hf; Q = S or Se) were obtained from high-temperature reactions without air. These sulfides and selenides are isostructural, crystallizing in the triclinic system with space group P1 and Z = 5, in contrast to Tl(4)MTe(4) compounds that adopt space group R3. The unit cell parameters for Tl(4)ZrS(4) are as follows: a = 9.0370(5) ?, b = 9.0375(5) ?, c = 15.4946(9) ?, α = 103.871(1)°, β = 105.028(1)°, γ = 90.138(1)°, and V = 1183.7(1) ?(3). In contrast to the corresponding tellurides, the sulfides and selenides exhibit edge-shared MQ(6) octahedra, propagating along the c axis in a zigzag manner. All elements occur in the most common oxidation states, according to the formulation (Tl(+))(4)M(4+)(Q(2-))(4). Electronic structure calculations predict energy band gaps of 1.7 eV for Tl(4)ZrS(4) and 1.3 eV for Tl(4)ZrSe(4), which are in accordance with the large resistivity values observed experimentally.  相似文献   

3.
Liu JW  Wang P  Chen L 《Inorganic chemistry》2011,50(12):5706-5713
Three semiconducting ternary sulfides have been synthesized from the mixture of elements with about 20% excess of sulfur (to establish oxidant rich conditions) by solid-state reactions at high temperature. Ba(12)In(4)S(19) ≡ (Ba(2+))(12)(In(3+))(4)(S(2-))(17)(S(2))(2-), 1, crystallizes in the trigonal space group R ?3 with a = 9.6182(5) ?, b = 9.6182(5) ?, c = 75.393(7) ?, and Z = 6, with a unique long period-stacking structure of a combination of monometallic InS(4) tetrahedra, linear dimeric In(2)S(7) tetrahedra, disulfide S(2)(2-) anions, and isolated sulfide S(2-) anions that is further enveloped by Ba(2+) cations. Ba(4)In(2)S(8) ≡ (Ba(2+))(4)(In(3+))(2)(S(2-))(6)(S(2))(2-), 2, crystallizes in the triclinic space group P ?1? with a = 6.236(2) ?, b = 10.014(4) ?, c = 13.033(5) ?, α = 104.236(6)°, β = 90.412(4)°, γ = 91.052(6)°, and Z = 2. Ba(4)Ga(2)S(8) ≡ (Ba(2+))(4)(Ga(3+))(2)(S(2-))(6)(S(2))(2-), 3, crystallizes in the monoclinic P2(1)/c with a = 12.739(5) ?, b = 6.201(2) ?, c = 19.830(8) ?, β = 104.254(6)° and Z = 4. Compounds 2 and 3 represent the first one-dimensional (1D) chain structure in ternary Ba/M/S (M = In, Ga) systems. The optical band gaps of 1 and 3 are measured to be around 2.55 eV, which agrees with their yellow color and the calculation results. The CASTEP calculations also reveal that the disulfide S(2)(2-) anions in 1-3 contribute mainly to the bottom of the conduction bands and the top of valence bands, and thus determine the band gaps.  相似文献   

4.
Yin W  Feng K  Wang W  Shi Y  Hao W  Yao J  Wu Y 《Inorganic chemistry》2012,51(12):6860-6867
The twelve quaternary rare-earth selenides Ba(2)MLnSe5 (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er) have been synthesized for the first time. The compounds Ba(2)GaLnSe(5) (Ln = Y, Nd, Sm, Gd, Dy, Er) are isostructural and crystallize in a new structure type in the centrosymmetric space group P ?1 of the triclinic system while the isostructural compounds Ba(2)InLnSe(5) (Ln = Y, Nd, Sm, Gd, Dy, Er) belong to the Ba(2)BiInS(5) structure type and crystallize in the noncentrosymmetric space group Cmc2(1) of the orthorhombic system. The structures contain infinite one-dimensional anionic chains (1)(∞)[GaLnSe(5)](4-) and (1)(∞)[InLnSe(5)](4-), and both chains are built from LnSe(6) octahedra and MSe(4) (M = Ga, In) tetrahedra in the corresponding selenides. As deduced from the diffuse reflectance spectra, the band gaps of most Ba(2)MLnSe(5) (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er) compounds are around 2.2 eV. The magnetic susceptibility measurements on Ba(2)GaGdSe(5) and Ba(2)InLnSe(5) (Ln = Nd, Gd, Dy, Er) indicate that they are paramagnetic and obey the Curie-Weiss law, while the magnetic susceptibility of Ba(2)InSmSe(5) deviates from the Curie-Weiss law as a result of the crystal field splitting. Furthermore, Ba(2)InYSe(5) exhibits a strong second harmonic generation response close to that of AgGaSe(2), when probed with the 2090 nm laser as fundamental wavelength.  相似文献   

5.
Wu L  Chen XL  Li H  He M  Xu YP  Li XZ 《Inorganic chemistry》2005,44(18):6409-6414
A series of novel borates, MM'4(BO3)3 (M = Li, M' = Sr; M = Na, M' = Sr, Ba), have been successfully synthesized by standard solid-state reaction. The crystal structures have been determined from powder X-ray diffraction data. They crystallize in the cubic space group Iad with large lattice parameters: a = 14.95066(5) A for LiSr4(BO3)3, a = 15.14629(6) A for NaSr4(BO3)3, and a = 15.80719(8) A for NaBa4(BO3)3. The structure was built up from 64 small cubic grids, in which the M' atoms took up the corner angle and the BO3 triangles or MO6 cubic octahedra filled in the interspaces. The isolated [BO3]3- anionic groups are perpendicular to each other, distributed along three 100 directions. The anisotropic polarizations were counteracting, forming an isotropic crystal. Sr and Ba atoms were found to be completely soluble in the solid solution NaSr(4-)xBax(BO3)3 (0 < or = x < or = 4). The photoluminescence of samples doped with the ions Eu2+ and Eu3+ was studied, and effective yellow and red emission was detected, respectively. The results are consistent with the crystallographic study. The DTA and TGA curves of them show that they are chemically stable and congruent melting compounds.  相似文献   

6.
Four new quaternary chalcogenides, Ba4AgGaS6 ( 1 ), Ba4AgGaSe6 ( 2 ), Ba4CuInS6 ( 3 ), and Ba4AgInS6 ( 4 ), were synthesized by solid‐state reactions and their structures were characterized through single‐crystal X‐ray diffraction. In spite of their similar chemical compositions, the flexible arrangement between the transition metals and the triel atoms leads to subtle differences in their polyanion structures. All structures feature similar [MTrQ6]8? 1D polyanionic chains (M=Cu, Ag; Tr=Ga, In; Q=S, Se), which are constructed from corner‐sharing MQ4 or TrQ4 tetrahedra. However, the transition metals and triels are mixed in 1 , 2 , and 3 , but they occupy independent crystallographic sites in 4 . As a result, compounds 1 – 3 belong to the known Ba2CoS3 (Pnma No. 62) or Ba2MnS3 (Pnma No. 62) class, whereas 4 crystallizes in its own structural type within the monoclinic P21/c (No. 14) space group. The structural relationship among these new phases was also studied with the aid of DFT calculations and related optical properties are presented as well.  相似文献   

7.
Lin H  Maggard PA 《Inorganic chemistry》2007,46(4):1283-1290
The new copper(I) rhenates, CuReO4(pyz) (I) and Cu3ReO4(q6c)2 (II) (pyz = pyrazine; q6c = quinoline-6-carboxylate), were synthesized by hydrothermal methods at 140-150 degrees C, and their structures determined via single-crystal X-ray diffraction (I, P21/n, No. 14, Z = 4, a = 7.972(1) A, b = 11.928(2) A, c = 8.430(1) A, beta = 102.161(2) degrees ; II, P21, No. 4, Z = 2, a = 8.253(2) A, b = 6.841(2) A, c = 18.256(6) A, beta = 101.37(2) degrees ) and characterized by thermogravimetric analyses and UV-vis diffuse reflectance. The structure of I contains 'CuReO4' layers that are pillared through bridging pyrazine ligands via the Cu sites, while the structure of II is polar and contains chains of 'Cu2ReO4' that are condensed into layers by coordination to linear 'Cu(q6c)2' bridges between the chains. In contrast to air-sensitive CuReO4, both hybrid analogues are stable in air owing to a stabilization of the Cu1+ oxidation state by N-donating ligands, but decompose upon heating with the removal of the organic ligands, which for I yields crystalline CuReO4. UV-vis diffuse reflectance measurements and electronic structure calculations on all three copper perrhenates, I, II, and CuReO4, show that each exhibits an optical band gap of approximately 2.1-2.2 eV, with conduction and valence band levels that are primarily derived from the Re d0 and Cu d10 orbitals, respectively, and mixed with O p-orbital contributions. In contrast to the silver rhenates, which have relatively lower energy Ag d10 orbitals, the inclusion of the organic ligands into the structures has only a very minor effect ( approximately 0.1 eV) on the band gap size. The optical absorptions, in combination with the air-stable open-framework layered structures, illustrate that heterometallic Cu1+/Re7+ oxides can be promising candidates for investigating in visible-light photocatalytic reactions.  相似文献   

8.
The seven new isostructural quaternary uranium chalcogenides KCuUS 3, RbCuUS 3, RbAgUS 3, CsCuUS 3, CsAgUS 3, RbAgUSe 3, and CsAgUSe 3 were prepared from solid-state reactions. These isostructural materials crystallize in the layered KZrCuS 3 structure type in the orthorhombic space group Cmcm. The structure is composed of UQ 6 octahedra and MQ 4 tetrahedra that share edges to form (2) infinity[UMQ 3 (-)] layers. These layers stack perpendicular to [010] and are separated by layers of face- and edge-sharing AQ 8 bicapped trigonal prisms. There are no Q-Q bonds in the structure, so the formal oxidation states of A/U/M/Q may be assigned as 1+/4+/1+/2-, respectively. CsCuUS 3 shows semiconducting behavior with thermal activation energy E a = 0.14 eV and sigma 298 = 0.3 S/cm. From single-crystal absorption measurements in the near IR range, the optical band gaps of these compounds are smaller than 0.73 eV. The more diffuse 5f electrons play a much more dominant role in the optical properties of the AMUQ 3 compounds than do the 4f electrons in the AMLnQ 3 compounds (Ln = rare earth). Periodic DFT spin band-structure calculations on CsCuUS 3 and CsAgUS 3 establish two energetically similar antiferromagnetic spin structures and show magnetic interactions within and between the layers of the structure. Density-of-states analysis shows M-Q orbital overlap in the valence band and U-Q orbital overlap in the conduction band.  相似文献   

9.
The rare-earth metal(III) oxide selenides of the formula La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were synthesized from a mixture of the elements with selenium dioxide as the oxygen source at 750 degrees C. Single crystal X-ray diffraction was used to determine their crystal structures. The isostructural compounds M4O4Se[Se2] (M=La, Ce, Pr, Nd, Sm) crystallize in the orthorhombic space group Amm2 with cell dimensions a=857.94(7), b=409.44(4), c=1316.49(8) pm for M=La; a=851.37(6), b=404.82(3), c=1296.83(9) pm for M=Ce; a=849.92(6), b=402.78(3), c=1292.57(9) pm for M=Pr; a=845.68(4), b=398.83(2), c=1282.45(7) pm for M=Nd; and a=840.08(5), b=394.04(3), c=1263.83(6) pm for M=Sm (Z=2). In their crystal structures, Se2- anions as well as [Se-Se]2- dumbbells interconnect {[M4O4]4+} infinity 2 layers. These layers are composed of three crystallographically different, distorted [OM4]10+ tetrahedra, which are linked via four common edges. The compounds exhibit strong Raman active modes at around 215 cm(-1), which can be assigned to the Se-Se stretching vibration. Optical band gaps for La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were derived from diffuse reflectance spectra. The energy values at which absorption takes place are typical for semiconducting materials. For the compounds M4O4Se[Se2] (M=La, Pr, Nd, Sm) the fundamental band gaps, caused by transitions from the valence band to the conduction band (VB-CB), lie around 1.9 eV, while for M=Ce an absorption edge occurs at around 1.7 eV, which can be assigned to f-d transitions of Ce3+. Magnetic susceptibility measurements of Ce4O4Se[Se2] and Nd4O4Se[Se2] show Curie-Weiss behavior above 150 K with derived experimental magnetic moments of 2.5 micro B/Ce and 3.7 micro B/Nd and Weiss constants of theta p=-64.9 K and theta p=-27.8 K for the cerium and neodymium compounds, respectively. Down to 1.8 K no long-range magnetic ordering could be detected. Thus, the large negative values for theta p indicate the presence of strong magnetic frustration within the compounds, which is due to the geometric arrangement of the magnetic sublattice in form of [OM4]10+ tetrahedra.  相似文献   

10.
Yin W  Feng K  Hao W  Yao J  Wu Y 《Inorganic chemistry》2012,51(10):5839-5843
The four isostructural compounds Li(2)In(2)MQ(6) (M = Si, Ge; Q = S, Se) have been synthesized for the first time. They crystallize in the noncentrosymmetric monoclinic space group Cc with the three-dimensional framework composed of corner-sharing LiQ(4), InQ(4), and MQ(4) tetrahedra. The second-harmonic-generation signal intensities of the two sulfides and two selenides were close to those of AgGaS(2) and AgGaSe(2), respectively, when probed with a laser with 2090 nm as the fundamental wavelength. They possess large band gaps of 3.61(2) eV for Li(2)In(2)SiS(6), 3.45(2) eV for Li(2)In(2)GeS(6), 2.54(2) eV for Li(2)In(2)SiSe(6), and 2.30(2) eV for Li(2)In(2)GeSe(6), respectively. Moreover, these four compounds all melt congruently at relatively low temperatures, which makes it feasible to grow bulk crystals needed for practical application by the Bridgman-Stockbarger method.  相似文献   

11.
A new type of superhalogen‐(super)alkali compound, BF4‐M (M = Li, FLi2, OLi3, NLi4), is theoretically characterized at the MP2/6‐311+G(3df) level. The interaction between superhalogen BF4 and different shaped (super)alkali M is found to be strong and ionic in nature. Bond energies of these BF4‐M species are in the range of 200.0–226.7 kcal/mol at the CCSD(T)/6‐311+G(3df) level, which are much larger than the traditional ionic bond energy of 130.1 kcal/mol of FLi. In addition, different from the alkali halides, the BF4‐M compounds prefer to dissociate into ions rather than neutral fragments. The energetic properties of BF4‐M are found to be closely related to the size of the M subunit. The different effects of superalkali and superhalogen subunits on the nonlinear optical (NLO) properties of such superatom compounds are also revealed. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
Jia D  Zhang Y  Zhao Q  Deng J 《Inorganic chemistry》2006,45(24):9812-9817
Novel selenidoantimonate compounds [M(dien)2]2Sb4Se9 [M = Mn (1), Fe (2)], [Co(dien)2]2Sb2Se6 (3), and [Ni(dien)2]2Sb2Se5 (4) (dien = diethylenetriamine) were solvothermally synthesized and characterized. The unique features of compounds 1-3 are the mixed-valent anionic structures constructed by the Sb(III)Se3 trigonal pyramid and Sb(V)Se4 tetrahedron. Three Sb(III)Se3 pyramids share common corners, forming a heterocyclic Sb3Se6 moiety, and the Sb3Se6 moieties are further connected with Sb(V)Se4 tetrahedra to form the novel one-dimensional [Sb4Se9(4-)]n anionic chain in 1 and 2. The discrete [Sb2Se6]4- anion in 3 is formed by an Sb(III)Se3 trigonal pyramid and an Sb(V)Se4 tetrahedron sharing a common corner. The [Sb2Se5]4- anion in 4 is composed of two Sb(III)Se3 trigonal pyramids connected in the same manner as the [Sb2Se6]4- anion. The mixed-valent [Sb4Se9(4-)]n and [Sb2Se6]4- anions were not observed before. The synthesis and solid-state structural studies of the title compounds show that the transition-metal complexes exhibit different structure-directing effects on the formation of selenidoantimonates in dien. Extensive N-H...Se hydrogen bonds are observed between cations and anions in compounds 1-4, resulting in three-dimensional network structures. Optical and thermal properties of the compounds are reported.  相似文献   

13.
14.
15.
The Hartree–Fock (HF) approximation and the Single‐excitation configuration interaction (single‐CI) method are used, with sum‐over‐state (SOS) approach, in order to determine the static (ω = 0) and frequency dependent linear and non linear optical (NLO) properties of the M @ C60 endohedrals (M = Cs, Li, and Na). We discuss the effects of displacement, movement direction, and type of atom on the (hyper) polarizability of the M at C60 endohedrals. A HF‐single‐CI model yields the (hyper) polarizability magnitudes and spectra, which are in agreement with experiment. Our results indicate that the movement of the atom (M) effect on the NLO spectra of M @ C60 endohedrals is dramatic. These results may provide new means to design some new types of NLO materials. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
Yao J  Deng B  Ellis DE  Ibers JA 《Inorganic chemistry》2002,41(26):7094-7099
Four new compounds, RbSiBiS(4), RbGeBiS(4), CsSiBiS(4), and CsGeBiS(4), have been synthesized by means of the reactive flux method. The isostructural compounds RbSiBiS(4), RbGeBiS(4), and CsGeBiS(4) crystallize in space group P2(1)/c of the monoclinic system with four formula units in cells of dimensions at 153 K of a = 6.4714(4) A, b = 6.7999(4) A, c = 17.9058(11) A, and beta = 108.856(1) degrees for RbSiBiS(4), a = 6.5864(4) A, b = 6.8559(4) A, c = 17.9810(12) A, and beta = 109.075(1) degrees for RbGeBiS(4), and a = 6.5474(4) A, b = 6.9282(4) A, c = 18.8875(11) A, and beta = 110.173(1) degrees for CsGeBiS(4). CsSiBiS(4) crystallizes in a different structure type in space group P2(1)/c of the monoclinic system with four formula units in a cell of dimensions at 153 K of a = 9.3351(7) A, b = 6.9313(5) A, c = 12.8115(10) A, and beta = 109.096(1) degrees. The two structure types are closely related and consist of [MBiS(4)(-)] (M = Si, Ge) layers separated by bicapped trigonal-prismatically coordinated alkali-metal atoms. In each, the M atom is coordinated to a tetrahedron of four S atoms and the Bi atom is coordinated to seven S atoms comprising five close S atoms at the corners of a square pyramid with Bi near the center of the basal plane and the sixth and seventh S atoms further away to complete a distorted monocapped trigonal prism. The optical band gaps of 2.23 eV for RbGeBiS(4) and 2.28 eV for CsGeBiS(4) were deduced from their diffuse reflectance spectra. From a band structure calculation, the optical absorption for RbGeBiS(4) originates from the [GeBiS(4)(-)] layer. The Ge 4p orbitals, Bi 6p orbitals, and S 3p orbitals are highly hybridized.  相似文献   

17.
Dai Z  Chen X  Shi Z  Zhang D  Li G  Feng S 《Inorganic chemistry》2003,42(3):908-912
Two inorganic-organic hybrid compounds with the formula M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (M = Co, Ni) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compounds Co(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (1) and Ni(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (2), which are structural analogues, crystallize in the triclinic space group Ponemacr; with crystal data a = 7.9665(3) A, b = 8.1974(3) A, c = 13.8096(4) A, alpha = 85.704(2) degrees, beta = 73.5180(10) degrees, gamma = 75.645(2) degrees, V = 837.76(5) A(3), and Z = 2 and a = 7.9489(19) A, b = 8.128(2) A, c = 13.709 A, alpha = 85.838(6) degrees, beta = 73.736(8) degrees, gamma = 75.594(9) degrees, V = 823.5(4) A(3), and Z = 2, respectively. [M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10)] (M = Co, Ni) have a three-dimensional structure and consist of two subunits, [(VO(2))(SeO(3))](-) infinite chains and [M(4,4'-bipy)(H(2)O)](2+) fragments. The [(VO(2))(SeO(3))](-) chains are composed of [V(2)Se(4)O(14)](4)(-) clusters linked by VO(4)N triangular bipyramids. The 4,4'-bipy molecule as a bifunctional organic ligand is directly linked to Co or Ni and V atoms, affording the three-dimensionality. The compounds were characterized by infrared spectroscopy and differential thermal and thermogravimetric analyses.  相似文献   

18.
Microstructured Ag2WO4 with shuttle-like shape was synthesized via a precipitation process with assistance of Arabic gum. MWO4 (M=Co and Mn) nanocrystals were prepared facilely via a hydrothermal procedure. The as-prepared samples were identified and characterized by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy, respectively. The resultant samples were used directly as electrocatalysts modified on a glassy carbon electrode for p-nitrophenol, K2CrO4 and H2O2 reduction in a basic solution. The results showed that all peak currents increased markedly but the corresponding peak potential decreased by using CoWO4, MnWO4 and Ag2WO4 in turn by comparing to a bare glassy carbon electrode, and Ag2WO4, CoWO4 and MnWO4 exhibited enhanced electrocatalytic activity for p-nitrophenol reduction. Ag2WO4 also showed effective electrocatalytic activity for K2CrO4 and H2O2 reduction, but both CoWO4 and MnWO4 almost displayed very weak electrocatalytic properties for K2CrO4 and H2O2 reduction in basic solution.  相似文献   

19.
Geng L  Cheng WD  Zhang H  Lin CS  Zhang WL  Li YY  He ZZ 《Inorganic chemistry》2011,50(6):2378-2384
Two new quaternary sulfides, Ba(2)SbFeS(5) and Ba(2)BiFeS(5), were synthesized by using a conventional high-temperature solid-state reaction method in closed silica tubes at 1123 K. The two compounds both crystallize in the orthorhombic space group Pnma with a = 12.128(6) ?, b = 8.852(4) ?, c = 8.917(4) ?, and Z = 4 for Ba(2)SbFeS(5) and a = 12.121(5) ?, b = 8.913(4) ?, c = 8.837(4) ?, and Z = 4 for Ba(2)BiFeS(5). The crystal structure unit can be viewed as an infinite one-dimensional edge-shared MS(5) (M = Sb, Bi) tetragonal-pyramid chain with FeS(4) tetrahedra alternately arranged on two sides of the MS(5) polyhedral chain via edge-sharing (so the chain can also be written as (1)(∞)[MFeS(5)](4-)). Interestingly, the compounds have the structural type of a Ba(3)FeS(5) high-pressure phase considering one Ba(2+) is replaced by one Sb(3+)/Bi(3+), with Fe(4+) reduced to Fe(3+) for in order to maintain the electroneutrality of the system. As a result, the isolated iron ions in Ba(3)FeS(5) are bridged by intermediate MS polyhedra in Ba(2)MFeS(5) (M = Sb, Bi) compounds and form the (1)(∞)[MFeS(5)](4-) chain structure. This atom substitution of Ba(2+) by one Sb(3+)/Bi(3+) leads to a magnetic transition from paramagnetic Ba(3)FeS(5) to antiferromagnetic Ba(2)MFeS(5), resulting from an electron-exchange interaction of the iron ions between inter- or intrachains. Magnetic property measurements indicate that the two compounds are both antiferromagnetic materials with Ne?el temperatures of 13 and 35 K for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively. First-principles electronic structure calculations based on density functional theory show that the two compounds are both indirect-band semiconductors with band gaps of 0.93 and 1.22 eV for Ba(2)SbFeS(5) and Ba(2)BiFeS(5), respectively.  相似文献   

20.
Two 5-tetrazolylazo-8-hydroxyquinoline (TTHQ) Zn2+ and Mn2+ complexes, [Zn(TTHQ)(en)]·2H2O (en = ethylenediamine) (1) and [Mn2(TTHQ)2(H2O)6]·2H2O (2), were synthesized and characterized by single-crystal X-ray diffraction analysis. Stacking (ππ) and hydrogen-bonding interactions are responsible for the stabilization of the supramolecular structures. UV–vis spectral changes and photoluminescent properties of TTHQ, 1 and 2 were investigated and a red emission was found. The hydrogen-bonding interaction energies in 1 and 2 were calculated using density functional theory at the WB97XD/6-31++G level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号