首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a facile localized reduction approach to synthesizing a Au nanoparticle-decorated Keggin ion/TiO(2) photococatalyst for improved solar light photocatalysis application. This has been achieved by exploiting the ability of TiO(2)-bound Keggin ions to act as a UV-switchable, highly localized reducing agent. Notably, the approach proposed here does not lead to contamination of the resultant cocatalyst with free metal nanoparticles during aqueous solution-based synthesis. The study shows that for Keggin ions (phosphotungstic acid, PTA), being photoactive molecules, the presence of both Au nanoparticles and PTA on the TiO(2) surface in a cocatalytic system can have a dramatic effect on increasing the photocatalytic performance of the composite system, as opposed to a TiO(2) surface directly decorated with metal nanoparticles without a sandwiched PTA layer. The remarkable increase in the photocatalytic performance of these materials toward the degradation of a model organic Congo red dye correlates to an increase of 2.7-fold over that of anatase TiO(2) after adding Au to it and 4.3-fold after introducing PTA along with Au to it. The generalized localized reduction approach to preparing TiO(2)-PTA-Au cocatalysts reported here can be further extended to other similar systems, wherein a range of metal nanoparticles in the presence of different Keggin ions can be utilized. The composites reported here may have wide potential implications toward the degradation of organic species and solar cell applications.  相似文献   

2.
Cerium-doped Titanium dioxide (TiO(2)) nanoparticles are prepared by sol-gel method. Doping shifts the UV absorption edge of TiO(2) to the visible region, making it efficient for visible light photocatalysis. Incorporation of cerium decreases the effective band gap of TiO(2) and increases the Urbach energy levels. At the dopant concentrations of 0.015 and 0.025 mol the luminescence intensity increases compared to undoped TiO(2); however, the luminescence is quenched at 0.035 mol. Quenching of luminescence indicates efficient separation of charge carriers. Undoped TiO(2) is showing poor performance in the photocatalytic degradation of methyl orange under visible light. However, on cerium doping its photoactivity is increased, and is drastically enhanced at 0.035 mol of cerium. Further increase in Ce(3+) doping level to 0.045 mol results in the reduction of the photodegradation of the dye. On UV irradiation, entire samples show good photocatalytic activity up to 30 min, but their efficiency decreases when irradiation time is increased to 45 min. Irradiation for longer time results in negative charging of the TiO(2) surface with migrating electrons. The negatively charged surface repels the OH(-) ion and O(2) molecule from adsorbing on its surface thus decreasing the availability of hydroxyl and superoxide radical for dye degradation.  相似文献   

3.
以TiH2为Ti源,H2O2为氧化剂,首先通过表面氧化得到不同状态的前驱体凝胶,然后采用后续水热处理制备Ti3+自掺杂的纳米Ti O2.考察了前驱体凝胶状态及水热处理时间对材料结构和性能的影响.利用X射线衍射、透射电子显微镜、X射线光电子能谱、电子顺磁共振波谱和紫外-可见漫反射光谱手段对样品进行表征.以次甲基蓝溶液为模拟废水评价样品的可见光催化降解性能.结果表明,与纯Ti O2相比,Ti3+的自掺杂使材料在可见光区有明显的吸收,并具有良好的可见光催化降解性能和循环使用性能.当采用黄色凝胶为前驱体时,在160°C下水热处理24 h所得样品在可见光下光催化降解次甲基蓝的反应速率常数(0.0439 min-1)是纯Ti O2的18.3倍.  相似文献   

4.
Titania supported gold nanoparticles as photocatalyst   总被引:1,自引:0,他引:1  
This Perspective is focused on the photocatalytic activity of gold nanoparticles supported on titania (Au/TiO(2)). Titania is the most widely used photocatalyst, but its limited activity under visible light irradiation has motivated the quest for modified titania materials absorbing visible light. The review starts by justifying how doping with metallic elements is a related strategy, but different, to that leading to the use of Au/TiO(2) in photocatalysis. Data supporting and confirming the photoactivity of gold nanoparticles in colloidal solutions are briefly presented to justify the possibility of gold photosensitization of titania by electron injection into the conduction band. After describing the most common procedures used to prepare Au/TiO(2), the central part of this article is focused on the photocatalytic activity reported for Au/TiO(2) for hydrogen generation, dye decoloration, phenol decomposition and carboxylic acid degradation, among other processes. Emphasis is given to the role that parameters like Au loading, particle size, surface area, spatial structuring and others play on the photocatalytic activity. One important issue has been to distinguish those reports using visible light from those other in which direct titania excitation by UV light has been used. These Au/TiO(2) photocatalysts can find real applications in the near future for environmental remediation and for hydrogen generation.  相似文献   

5.
染料在纳米TiO2薄膜表面吸附性能的研究   总被引:11,自引:0,他引:11  
采用溶胶-凝胶法制备纳米TiO2薄膜,并通过吸附染料形成染料/TiO2复合薄膜。分析了染料与TiO2薄膜的相互关系,利用紫外可见、比表面等技术研究染料在纳米TiO2薄膜表面的吸附性能,并计算出TiO2薄膜对染料的最大吸附率。研究表明,染料溶液浓度、温度以及TiO2薄膜浸泡时间对染料吸附量有着显著的影响,染料的吸附性能直接影响着太阳能电池的光电转换效率。  相似文献   

6.
Photoelectrocatalytic degradation of various dyes under visible light irradiation with a TiO(2) nanoparticles electrode has been investigated to reveal the mechanism for TiO(2)-assisted photocatalytic degradation of dyes. The degradation of both cationic and anionic dyes at different biases, including the change in the degradation rate of the dyes and the photocurrent change with the bias potential, the degraded intermediates, the voltage-induced adsorption of dyes, the accumulation of electrons in the TiO(2) electrode, the effect of various additives such as benzoquinone (BQ) and N,N-dimethyl aniline (DMA), and the formation of active oxygen species such as O(2)(*-) and H(2)O(2) were examined by UV-visible spectroscopy, HPLC, TOC, and spin-trap ESR spectrometry. It was found that the dyes could controllably interact with the TiO(2) surface by external bias changes and charging of dyes. The cationic dyes such as RhB and MG underwent efficient mineralization at negative bias, but the N-dealkylation process predominated at positive bias under visible light irradiation. The discolorations of the anionic dyes SRB and AR could not be accelerated significantly at either negative or positive bias. At a negative bias of -0.6 V vs SCE, O(2)(*-) and dye(*+) were formed simultaneously at the electrode/electrolyte interface during degradation of cationic RhB. In the case of anionic dyes, however, it is impossible for the O(2)(*-) and dye cationic radical to coexist at the electrode/electrolyte surface. Experimental results imply both the superoxide anionic radical and the dye cationic radical are essential to the mineralization of the dyes under visible light-induced photocatalytic conditions.  相似文献   

7.
Surface-fluorinated TiO2 (F-TiO2) particles were prepared via the HF etching method. The surface characteristics of fluorinated TiO2, the adsorption modes of dyes, and the reaction pathways for the photocatalytic degradation of dye pollutants under visible light irradiation were investigated. It was found that, in the treatment of TiO2 by HF etching, F(-) not only displaces surface HO(-) but also substitutes some surface lattice oxygen. Using zwitterionic Rhodamine B (RhB) dye as a model, the change of the adsorption mode of RhB on F-TiO2 relative to that on pure TiO2 was validated by adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and IR techniques for the first time. RhB preferentially anchors on pure TiO2 through the carboxylic (-COOH) group, while its adsorption group is switched to the cationic moiety (-NEt 2 group) on F-TiO2. Both the photocatalytic degradation kinetics and mechanisms were drastically changed after surface fluorination. Dyes with positively charged nitrogen-alkyl groups such as methylene blue (MB), malachite green (MG), Rhodamine 6G (Rh6G), and RhB all underwent a rapid N-dealkylation process on F-TiO2, while on pure TiO2 direct cleavage of dye chromophore ring structures predominated. The relationship between surface fluorination and the degradation rate/pathway of dyes under visible irradiation was also discussed in terms of the effect of fluorination on the surface adsorption of dyes and on the energy band structure of TiO2.  相似文献   

8.
2-仲丁基-4,6-二硝基苯酚(DNBP)作为杀虫剂、除草剂和烯烃基芳香族化合物阻聚剂而被广泛地应用于工农业生产中.在 DNBP生产和使用过程中,会产生大量难以降解的有机废水,从而对人类和生态环境造成极大危害.因此,开展含 DNBP废水的处理技术和方法研究具有重要的现实意义. TiO2半导体材料由于具有良好的光化学特性和电化学行为,近几十年来一直是光催化领域的研究热点.在能量等于或大于 TiO2的带隙能级的辐照光照射下, TiO2可以产生光生电子/空穴对(e-/h+).光生电子和空穴分别与 TiO2表面被吸附的 H2O和 O2分子反应,生成具有强氧化性的活性羟基自由基(?OH),对硝基酚类有机污染物具有较强的降解能力. TiO2光催化反应属于非均相反应,反应在催化剂的表面进行,催化剂对污染物的吸附是影响其催化降解性能的重要因素.但是,传统 TiO2光催化剂存在比表面积小,对有机污染物吸附能力差,光生电子与空穴易于复合等缺陷,限制了 TiO2光催化技术的进一步发展和在水处理领域中的大规模应用.我们基于气凝胶具有多孔性、大比表面积和高孔隙率的特点,以富含硅、铝的工业废弃物粉煤灰为反应原料,首先利用碱熔法和常压干燥技术制备出 SiO2-Al2O3气凝胶.在此基础上,以钛酸四丁酯(TBOT)为反应前体, SiO2-Al2O3气凝胶为载体,利用酸催化溶胶-凝胶法(sol-gel)制备出 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂.利用 X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)、N2吸附-脱附(BET)、紫外-可见吸收光谱(UV-vis)等分析测试技术对所制备的 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂结构进行了表征.结果显示,在 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂中,粒径尺寸为10~30 nm的锐钛矿型 TiO2纳米颗粒均匀分散在 SiO2-Al2O3气凝胶载体上. TiO2/SiO2-Al2O3气凝胶三元复合光催化剂呈现典型介孔材料的 IV型等温线. SiO2-Al2O3气凝胶的加入极大提高了 TiO2光催化剂的比表面积和对有机污染物的吸附性能,但是对 TiO2光波吸收范围影响不大.在制备出 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂基础上,进一步对其在可见光条件下的光催化性能进行了研究.以500 W的 Xe灯光源模拟自然太阳光, DNBP为探针污染物分子,系统考察了可见光照射条件下溶液 pH值、光催化剂用量、光反应时间、DNBP溶液初始浓度不同因素对 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂催化活性的影响.结果表明, TiO2/SiO2-Al2O3气凝胶三元复合光催化剂对 DNBP有机污染物的吸附率和光降解率明显高于纯 TiO2样品.在 DNBP溶液初始浓度为0.167 mmol/L, pH =4.86,催化剂用量6 g/L,光照时间5 h的条件下, TiO2/SiO2-Al2O3气凝胶三元复合光催化剂对 DNBP的降解率几乎高达100%.根据 Langmuir-Hinshelwood方程,在低浓度下光催化降解反应符合一级反应动力学.所制备的 TiO2/SiO2-Al2O3气凝胶三元复合光催化剂具有良好的稳定性和重复利用性能.重复利用5次后, TiO2/SiO2-Al2O3气凝胶三元复合光催化剂对 DNBP的降解率仍高达90%以上.利用紫外-可见分光光度计、气相-质谱联用仪对 DNBP降解中间产物进行了分析,探讨了 DNBP的光催化降解机理.  相似文献   

9.
The titanium dioxide photocatalyst is employed to examine the influence of chemisorbed hexachloroplatinate(IV) anions (PtCl(6) (2-)) on the surface of P-25 TiO(2) particles on the photoinduced conversion of the azo dye Ethyl Orange (EO) in visible light-illuminated Pt(IV)/TiO(2) dispersions. Spin-trap electron spin resonance (ESR) spectral results, measurement of quantities of organoperoxides formed, total organic carbon (TOC) and chemical oxygen demand (COD(Cr)) assays, together with XPS evidence show that the self-sensitized transformation dynamics of the EO dye mediated by Pt(IV)/TiO(2) are much faster than those occurring on naked TiO(2) under otherwise identical conditions of visible light irradiation. X-ray photoelectron spectral data also show that under the experimental conditions used, no Pt(0) formed on the titania particles during visible light irradiation. We propose a reaction mechanism in which the more rapid conversion of EO in the presence of PtCl(6) (2-) is caused principally by photoexcitation of the dye and not by localized excitation of the tetrachloroplatinate(IV)/TiO(2) particles.  相似文献   

10.
通过静电纺丝法制备了含有Fe3O4纳米粒子的TiO2纳米纤维,采用水热法对该纤维表面进行纳米Ag修饰,制备出具有较强磁性和较好光催化性能的复合纤维.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外-可见光谱(UV-Vis)等对样品的结构和形貌进行表征,并以罗丹明B(Rh B)水溶液降解为模型反应,考察样品在紫外光照射下的光催化性能.结果表明,所制备的TiO2为锐钛矿结构,Fe3O4纳米粒子均匀分布在TiO2纤维中,Ag纳米颗粒比较均匀地分散在磁性TiO2纤维表面.经过纳米Ag修饰后,材料的光吸收能力大为增强,吸收带红移并扩展到可见光区.在紫外光照射40 min后,合成样品对Rh B的降解率达到99.5%.此外,Fe3O4纳米粒子的存在使该材料具有较强的磁性,可通过外加磁场将其分离回收.  相似文献   

11.
WOx/TiO2光催化剂的可见光催化活性机理探讨   总被引:8,自引:0,他引:8  
采用磁控溅射技术在用浸渍提拉法制得的TiO2薄膜上,溅射氧化钨层,通过气相反应中光催化降解二甲苯的实验表明,WOx/TiO2薄膜具有可见光活性.通过UV-Vis吸收光谱、X射线光电子能谱(XPS)等方法对其可见光活性的机理进行探索.UV-Vis吸收光谱表明WOx,TiO2对可见光响应的范围有一定的扩展,吸收强度增加.XPS表明WOx/TiO2薄膜表面形成了明显的W杂质能级和Ti缺陷能级,这是WOx/TiO2在可见光范围有一吸收的主要原因,也是光催化剂具有可见光活性的必要条件之一,同时杂质能级的存在使半导体费米能级上移,载流子增加,光催化效率提高.  相似文献   

12.
Russian Journal of Physical Chemistry A - In this paper, the sol–gel method has been use to synthesized TiO2/Ag2O nanoparticles for photocatalytic degradation of azo dye Acid Red 18 (AR18) in...  相似文献   

13.
Sol-gel-derived Mg(OH)(2) gel was coated onto TiO(2) nanoparticles, and the subsequent thermal topotactic decomposition of the gel formed a highly nanoporous MgO crystalline coating. The specific surface area of the electrode that was prepared from the core-shell-structured TiO(2) nanoparticles significantly increased compared with that of the uncoated TiO(2) electrode. The increase in the specific surface area of the MgO-coated TiO(2) electrode was attributed to the highly nanoporous MgO coating layer that resulted from the topotactic reaction. Dye adsorption behavior and solar cell performance were significantly enhanced by employing the MgO-coated TiO(2) electrode. Optimized coating of a MgO layer on TiO(2) nanoparticles enhanced the energy conversion efficiency as much as 45% compared to that of the uncoated TiO(2) electrode. This indicates that controlling the extrinsic parameters such as the specific surface area is very important to improve the energy conversion efficiency of TiO(2)-based solar cells.  相似文献   

14.
The visible-light-induced degradation reaction of 4-chlorophenol (4-CP) was investigated in aqueous suspension of pure TiO2. Contrary to common expectations, 4-CP could be degraded under visible illumination (lambda > 420 nm), generating chlorides and CO2 concomitantly. The observed visible reactivity was not due to the presence of trace UV light since the visible-light-induced reactions exhibited behaviors distinguished from those of UV-induced reactions. Dichloroacetate could not be degraded under visible light, whereas it degraded with a much faster rate than 4-CP under UV irradiation. The addition of tert-butyl alcohol, a common OH radical scavenger, did not affect the visible reactivity of 4-CP, which indicates that OH radicals are not involved. Other phenolic compounds such as phenol and 2,4-dichlorophenol were similarly degraded under visible light. The surface complexation between phenolic compounds and TiO2 appears to be responsible for the visible light reactivity. Diffuse reflectance UV-vis spectra showed that 4-CP adsorbed on TiO2 powder induced visible light absorption. The visible light reactivity among several TiO2 samples was apparently correlated with the surface area of TiO2. The visible-light-induced photocurrents on a TiO2 electrode could be obtained only in the presence of 4-CP. It is proposed that a direct electron transfer from surface-complexed phenol to the conduction band of TiO2 upon absorbing visible light (through ligand-to-metal charge transfer) initiates the oxidative degradation of phenolic compounds. When the surface complex formation was hindered by surface fluorination, surface platinization, and high pH, the visible-light-induced degradation of 4-CP was inhibited. The evidence of visible-light-induced reactions and the experimental conditions affecting the visible reactivity were discussed in detail.  相似文献   

15.
The increasing need for new materials capable of solar fuel generation is central in the development of a green energy economy. In this contribution, we demonstrate that black TiO(2) nanoparticles obtained through a one-step reduction/crystallization process exhibit a bandgap of only 1.85 eV, which matches well with visible light absorption. The electronic structure of black TiO(2) nanoparticles is determined by the unique crystalline and defective core/disordered shell morphology. We introduce new insights that will be useful for the design of nanostructured photocatalysts for energy applications.  相似文献   

16.
以氧化铟锡导电玻璃为基材,采用电泳沉积法制备负载型ZnO/TiO2复合涂层,经450℃后续烧结处理后,采用XRD、SEM、EDX和UV-Vis DRS对ZnO/TiO2复合涂层进行表征;在pH=7.00的磷酸盐缓冲溶液中,分别测试ZnO/TiO2复合涂层电极在紫外灯和100 W白炽灯辐照下的电化学阻抗谱、Tafel极化曲线和循环伏安等电化学性质。结果表明:ZnO以200~300 nm晶粒分散于复合涂层中,质量百分比为0.74%;ZnO/TiO2复合涂层在可见光区有一定的吸收;在可见光辐照下ZnO/TiO2复合涂层电极具有较好的光电活性,并对水的分解具有较强的光电催化活性。  相似文献   

17.
以纳米TiO2作光催化剂,制备出环境友好的可光催化降解的纳米复合塑料是解决“白色污染”行之有效的方法之一。本文综述了近年来纳米TiO2固相光催化降解固体废弃塑料的研究进展,探讨了TiO2-聚合物复合膜的固相光催化反应机理及光催化降解情况,从对纳米TiO2表面改性以改善其在聚合物中的分散性,对纳米TiO2进行修饰处理以提高其对可见光的吸收,从而提高其光催化效率等方面探讨了可光降解塑料研究存在的问题及应用前景。  相似文献   

18.
The light harvesting efficiency of dye-sensitized photoelectrodes was enhanced by coupling a TiO(2) photonic crystal layer to a conventional film of TiO(2) nanoparticles. In addition to acting as a dielectric mirror, the inverse opal photonic crystal caused a significant change in dye absorbance which depended on the position of the stop band. Absorbance was suppressed at wavelengths shorter than the stop band maximum and was enhanced at longer wavelengths. This effect arises from the slow group velocity of light in the vicinity of the stop band, and the consequent localization of light intensity in the voids (to the blue) or in the dye-sensitized TiO(2) (to the red) portions of the photonic crystal. By coupling a photonic crystal to a film of TiO(2) nanoparticles, the short circuit photocurrent efficiency across the visible spectrum (400-750 nm) could be increased by about 26%, relative to an ordinary dye-sensitized nanocrystalline TiO(2) photoelectrode.  相似文献   

19.
Herein we report the direct fabrication of TiO(2) subwavelength structures with 1-dimensional TiO(2) nanorods on glass substrate through solvothermal process to form self-cleaning antireflection coatings. TiO(2) precursor solutions with different solvent constituents create TiO(2) nanorods with much different morphologies grown on glass substrates. Apiculate TiO(2) nanorods with vertical orientation are grown on the glass substrate which is solvothermally treated in the precursor solution containing ethylene glycol. This glass substrate exhibit the highest transmittance of 70-85% in the range of 520-800 nm and negligible absorption in visible light region (400-800 nm). Furthermore, the TiO(2) nanorod arrays show high hydrophobicity and photocatalytic degradation ability which offer the glass substrate self-cleaning properties for both hydrophilic and oily contaminants.  相似文献   

20.
Cu2+/TiO2对甲基橙的光催化降解机理   总被引:11,自引:1,他引:10  
以自制的掺铜离子的混晶型二氧化钛为光催化剂,考察了甲基橙光催化降解过程中pH值和光源的影响,提出了两种不同的光催化降解机理:在高压汞灯照射下,TiO2的价带电子被激发到导带,光生电子和空穴主要通过Cu2+ 的短路循环而复合,光催化剂的活性降低;在太阳光照射下,甲基橙发生自身光敏化氧化反应,受激电子从单线态或三线态的甲基橙分子跃迁到TiO2的导带,Cu2+起到电荷传递中继站的作用,加速了注入电子向H2O2的转移,从而促进了甲基橙的光催化降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号