首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesion force studies of Janus nanoparticles   总被引:1,自引:0,他引:1  
Janus nanoparticles represent a unique nanoscale analogue to the conventional surfactant molecules, exhibiting hydrophobic characters on one side and hydrophilic characters on the other. Yet, direct visualization of the asymmetric surface structures of the particles remains a challenge. In this paper, we used a simple technique based on AFM adhesion force measurements to examine the two distinctly different hemispheres of the Janus particles at the molecular level. Experimentally, the Janus nanoparticles were prepared by ligand exchange reactions at the air-water interface. The particles were then immobilized onto a substrate surface with the particle orientation controlled by the chemical functionalization of the substrate surface, and an AFM adhesion force was employed to measure the interactions between the tip of a bare silicon probe and the Janus nanoparticles. It was found that when the hydrophilic side of the particles was exposed, the adhesion force was substantially greater than that with the hydrophobic side exposed, as the silicon probes typically exhibit hydrophilic properties. These studies provide further confirmation of the amphiphilic nature of the Janus nanoparticles.  相似文献   

2.
采用具有两亲性的两面体(Janus)粒子实现稳定的粒子界面组装与水滴模板法自组装过程相结合的方法获得了粒子在蜂窝状多孔聚合物薄膜内壁的高效定向修饰.通过与均质粒子组装形貌的对比,证明了Janus粒子因其特殊的界面自组装活性,可以获得高粒子加量条件下的规则多孔结构,解决了使用均质粒子时存在的结构有序性和粒子修饰密度之间的矛盾.而在较低粒子加量的条件下,Janus粒子也展示出与均质粒子极为不同的组装形貌.这一方法的建立,为新型表面功能化材料的制备提供了一个新的思路.  相似文献   

3.
Polydopamine (PDA)-Au Janus particles were obtained by simply adding HAuCl(4) to a PDA particle suspension, prepared via self-polymerization of dopamine in basic solution at room temperature. The structures of the PDA-Au particles are readily controlled by electrostatic repulsion between the constituent particles, which can be realized simply via adjusting the environmental pH. PDA-Au Janus particles are formed only in a narrow pH range of 2.5-3.0 due to the properly enhanced electrostatic repulsion between the Au particles growing on as-prepared PDA particles and between the Au and PDA particles. The obtained PDA-Au Janus particles can become interfacially active and self-assemble at oil/water interfaces as a result of spatially well-separated hydrophilic (PDA) and hydrophobic (Au) domains on the surfaces, reminiscent of amphiphilic molecules.  相似文献   

4.
From the organization of animal flocks to the emergence of swarming behaviors in bacterial suspension, populations of motile organisms at all scales display coherent collective motion. Recent studies showed that the anisotropic interaction between active particles plays a key role in the phase behaviors. Here we investigate the collective behaviors of based-active Janus particles that experience an anisotropic interaction of which the orientation is opposite to the direction of active force by using Langevin dynamics simulations in two dimensional space. Interestingly, the system shows emergence of collective swarming states upon increasing the total area fraction of particles, which is not observed in systems without anisotropic interaction or activity. The threshold for emergence of swarming states decreases as particle activity or interaction strength increases. We have also performed basic kinetic analysis to reproduce the essential features of the simulation results. Our results demonstrate that anisotropic interactions at the individual level are sufficient to set homogeneous active particles into stable directed motion.  相似文献   

5.
The solvation forces between two planar charged surfaces in ionic solutions, corresponding to charged and neutral hard spheres representing the ions and the solvent, respectively, are studied here using a weighted density functional theory for inhomogeneous Coulomb systems developed by us recently. The hard sphere contributions to the one-particle correlation function are evaluated nonperturbatively using a position-dependent effective density, while the electrical contributions are obtained through a perturbative expansion around this weighted density. The calculated results on the solvation forces between two charged hard walls compare well with available simulation results for ionic systems. For a neutral system, the present results show good agreement with the experimentally observed oscillating forces for two mica surfaces in octamethylcyclotetrasiloxane. The present approach thus provides a direct route to the calculation of interaction energies between colloidal particles.  相似文献   

6.
The behavior of a fluid inside a closed narrow slit between solid walls is examined on the basis of the density functional theory. It is shown that the constraint of constant number of molecules leads to interesting effects which are absent when the slit is open and in contact with a reservoir. If the slit walls are identical, the density profiles at low temperatures or at high average densities rhoav of the fluid molecules in the slit have a sharp maximum in the middle of the slit, the value of the density at maximum being comparable to that of a liquid. The density of fluid at the walls is in this case comparable to the density of a vapor phase. At high temperatures or at low rhoav the fluid density in the middle of the slit is of the same order of magnitude as at the walls. For nonidentical walls the density maximum is shifted towards the wall with a stronger wall-fluid interaction. The transition between the two types (with and without the sharp maximum) of density profiles with the change of temperature in the slit occurs in a narrow range of temperatures, this range being larger for narrower slits. The pressures which the fluid exerts on the walls as well as the forces per unit area arising due to stresses in the sidewalls of the system can decrease with increasing rhoav. Such a behavior is not possible for homogeneous systems and can be explained by analyzing the fluid density at the walls when rhoav increases. The normal and transversal components of the pressure tensor were calculated as functions of the distance from the wall using the equation of hydrostatic equilibrium and direct calculation of the forces between molecules, respectively. The normal component decreases with increasing distance near the wall in contrast to the normal component near the liquid-vapor interface reported previously in the literature. The behavior of the transverse component does not depend on the fluid-solid interaction and is comparable to that for a liquid-vapor interface.  相似文献   

7.
Microfluidic production of multicompartmental emulsion droplets and particles has received considerable attention of late. In particular, droplets having two physically and chemically distinct segments (so-called Janus droplets) and the anisotropic particles synthesized from these droplets, are becoming increasingly popular because of their novel and promising properties, which make them suitable for use in numerous applications, including for controlled drug release, display devices, and self-assembly. So far, a range of interesting anisotropies have been accorded to Janus droplets and particles via microfluidics; these span from chromatic, magnetic, and hydrophobic–hydrophilic characteristics to selective degradation properties. Here, we summarize and discuss the recent trends related to Janus droplets and particles produced through microfluidic processing. We also review the parallelization technologies being developed for scaling up microfluidic emulsification in the industry.  相似文献   

8.
The hydrogen bond interaction between water molecules adsorbed on a Pd <111> surface, a nucleator of two dimensional ordered water arrays at low temperatures, is studied using density functional theory calculations. The role of the exchange and correlation density functional in the characterization of both the hydrogen bond and the water-metal interaction is analyzed in detail. The effect of non local correlations using the van der Waals density functional proposed by Dion et al. [M. Dion, H. Rydberg, E. Schr?der, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett., 2004, 92, 246401] is also studied. We conclude that the choice of this potential is critical in determining the cohesive energy of water-metal complexes. We show that the interaction between water molecules and the metal surface is as sensitive to the density functional choice as hydrogen bonds between water molecules are. The reason for this is that the two interactions are very similar in nature. We make a detailed analogy between the water-water bond in the water dimer and the water-Pd bond at the Pd <111> surface. Our results show a strong similarity between these two interactions and based on this we describe the water-Pd bond as a hydrogen bond type interaction. These results demonstrate the need to obtain an accurate and reliable representation of the hydrogen bond interaction in density functional theory.  相似文献   

9.
We investigate the interaction between water molecules and gold nanoclusters Au(n) through a systematic density functional theory study within both the generalized gradient approximation and the nonlocal van der Waals (vdW) density functional theory. Both planar (n = 6-12) and three-dimensional (3D) clusters (n = 17-20) are studied. We find that applying vdW density functional theory leads to an increase in the Au-Au bond length and a decrease in the cohesive energy for all clusters studied. We classify water adsorption on nanoclusters according to the corner, edge, and surface adsorption geometries. In both corner and edge adsorptions, water molecule approaches the cluster through the O atom. For planar clusters, surface adsorption occurs in a O-up/H-down geometry with water plane oriented nearly perpendicular to the cluster. For 3D clusters, water instead favors a near-flat surface adsorption geometry with the water O atom sitting nearly atop a surface Au atom, in agreement with previous study on bulk surfaces. Including vdW interaction increases the adsorption energy for the weak surface adsorption but reduces the adsorption energy for the strong corner adsorption due to increased water-cluster bond length. By analyzing the adsorption induced charge rearrangement through Bader's charge partitioning and electron density difference and the orbital interaction through the projected density of states, we conclude that the bonding between water and gold nanocluster is determined by an interplay between electrostatic interaction and covalent interaction involving both the water lone-pair and in-plane orbitals and the gold 5d and 6s orbitals. Including vdW interaction does not change qualitatively the physical picture but does change quantitatively the adsorption structure due to the fluxionality of gold nanoclusters.  相似文献   

10.
We manifest a significant influence of field direction and polarity on surface wetting, when the latter is tuned by application of an external electric field. Thermodynamics of field-induced filling of hydrocarbon-like nanopores with water is studied by open ensemble molecular simulation. Increased field strength consistently results in water-filling and electrostriction in hydrophobic nanopores. A threshold field commensurate with surface charge density of about one elementary charge per 10 nm2 suffices to render prototypical paraffin surfaces hydrophilic. When a field is applied in the direction perpendicular to the confining walls, the competition between orientational polarization and angle preferences of interfacial water molecules relative to the walls results in an asymmetric wettability of opposing surfaces (Janus interface). Reduction of surface free energy observed upon alignment of confinement walls with field direction suggests a novel mechanism whereby the applied electric field can operate selectively on water-filled nanotubes while empty ones remain unaffected.  相似文献   

11.
Synthetic bilayer membranes are two-dimensional arrays of am-phiphilic molecules. A large number of bilayer-forming am-phiphiles are designed by combinations of the structural elements (hydrophilic head, hydrophobic tail, connector, rigid segment, etc.). Metal chelate units have been incorporated into bilayer membranes as part of the bilayer component or as guest molecules. In the former example, a positively charged Cu(II)/polyamine complex and a Cu(II)/diketone unit are used as the hydrophilic head and rigid segment, respectively. The anisotropic orientation of these Cu(II) chelates is confirmed on the basis of the anisotropic ESR patterns observed for cast films of aqueous bilayer dispersions. Anionic planar Cu(II) complexes are incorporated noncovalently into cast films of ammonium bilayer membranes. These Cu(II) complexes are placed either horizontally or vertically, depending on the distribution of negative charges within each molecule. Strong antiferromagnetic interaction is observed when Cu(II) chelates are arranged two-dimensionally on bilayer membranes.  相似文献   

12.
Understanding the fundamental behavior of chemically anisotropic Janus and patchy particles at fluid interfaces enables utilization of these colloids as solid surfactants for stabilization of emulsions and as building blocks for fabrication of functional and responsive materials. Here, we review recent progress on understanding the combined effects of particle–interface and particle–particle interactions on the surface activity and organization of Janus and patchy particles at fluid interfaces. We also highlight recent developments that harness these fundamental properties for applications in self-assembly and emulsion stabilization, and discuss some of the outstanding questions that warrant future investigation. The progress in the field opens new opportunities to pursue techniques for controlling interfacial rheology, directed motion, and the formulation of novel soft materials.  相似文献   

13.
The effect of hydrophilic walls on the structure of the hydration shell of a Cl? ion is studied in terms of the model flat nanopore in contact with water vapors at room temperature by the Monte Carlo computerassisted simulations. In the field of hydrophilic walls, the hydration shell falls into two parts: the ion-enveloping part and the molecular-film spots spread over the wall surface above and under the ion. Both parts have the pronounced radial-layered structure. The three-dimensional scheme of distribution of the averaged local shell density represents a system of conical coaxial layers expanding in the direction from wall to ion. The effect of forcing out the ion from its own hydration shell is also observed for hydrophilic walls. The specific electric polarizability of the shell is strongly anisotropic. Its longitudinal component is several times larger than the transversal component and behaves nonmonotonically as the hydration shell grows, passing through the maximum. The molecular order near the walls is characterized by the preferential orientation of the molecule plane in parallel to the wall plane and the turn of symmetry axes of molecules in the direction parallel to the normal to the pore plane in the vicinity of the ion.  相似文献   

14.
Synthetic asymmetrical systems, Janus particles and patchy particles, are capable of undergoing hierarchical assembly processes that mimic those of Nature, to serve as switchable devices, optical probes, phase-transfer catalysts, and multifunctional drug carriers, each of which benefits from opposing surface patterns that behave differently. Production of nanometer-sized Janus particles that are equipped with efficient chemistries remains a challenge. A robust Janus-faced polymer nanoparticle framework that presents two orthogonally click-reactive surface chemistries has been generated by a recyclable strategy that involves reactive functional group transfer by templating against gold nanoparticle substrates. This anisotropic functionalization approach is compatible with a wide range of soft materials, providing Janus nanoparticles for the construction of dual-functionalized devices by accurately controlling chemical functionality at the nanoscopic level.  相似文献   

15.
张元霞  鲍艳  马建中 《化学进展》2021,33(2):254-262
Janus粒子由于在光、电、力、磁及表面亲/疏水性等方面表现出各向异性,因此在稳定乳液、生物医药及功能涂层等方面展现出广阔的应用价值.两亲性Janus粒子是指一侧具有亲水性、另一侧具有疏水性的不对称材料,由于同时具有表面活性剂的性质和固体颗粒的效应,在稳定Pickenng乳液方面极具优势.基于此,本文对两亲性Janus...  相似文献   

16.
孔维元  王海军  顾芳 《物理化学学报》2011,27(10):2400-2405
基于Roth、Evans和Dietrich有关耗尽势的密度泛函理论研究了硬核Yukawa(HCY)流体中胶体粒子间的耗尽势.在极稀溶液条件下,通过计算两个胶体粒子在不同条件下的耗尽势,分析了HCY流体的相关因素对耗尽势的影响.结果表明,胶体粒子与溶剂分子的尺寸比率、HCY流体分子间的相互作用、HCY流体分子的体相密度以及胶体粒子与流体分子之间的相互作用等因素均可对胶体粒子间耗尽势产生显著影响.研究结果可为实验上调控胶体粒子间的相互作用提供可能的线索.  相似文献   

17.
A system of soft ellipsoid molecules confined between two planar walls is studied using classical density-functional theory. Both the isotropic and nematic phases are considered. The excess free energy is evaluated using two different Ans?tze and the intermolecular interaction is incorporated using two different direct correlation functions (DCF's). The first is a numerical DCF obtained from simulations of bulk soft ellipsoid fluids and the second is taken from the Parsons-Lee theory. In both the isotropic and nematic phases the numerical DCF gives density and order parameter profiles in reasonable agreement with simulation. The Parsons-Lee DCF also gives reasonable agreement in the isotropic phase but poor agreement in the nematic phase.  相似文献   

18.
In this paper, we propose a model to analyze the stability of colloidal particles at the air-liquid interface. The proposed model for the colloidal particle interaction considers DLVO interactions and capillary, hydrophobic, and dipolar interactions between the particles. Typical values from the literature were assigned to most parameters included in the model. Numerical computation revealed the most important parameter in determining the total interaction is the density of dipoles at the external surface of the particles. We have found significant differences for the pair potential between hydrophobic and hydrophilic particles. Hydrophobic particles must aggregate in a principal minimum of the interaction potential curve while hydrophilic particles aggregate in a secondary minimum. Copyright 2000 Academic Press.  相似文献   

19.
In three recent publications it was predicted that an Al(4)C molecule is planar on the basis of nonhybrid density functional calculations. These conclusions contradict our earlier predictions that Al(4)C is tetrahedral. In order to resolve the controversy we probed in this paper a potential energy surface of Al(4)C using a large variety of theoretical methods including multiconfigurational methods and a variety of one-electron basis sets. We confirmed that the nonhybrid Becke's exchange with Perdew-Wang 1991 correlation functional density functional method predicts that Al(4)C has a planar structure in agreement with the reports of the other three groups. However, in this paper we have shown that high level ab initio calculations at the coupled cluster with singles, doubles, and noniterative triples and at the complete active space self-consistent field followed by multireference configurational interaction levels of theory confirm our earlier prediction that Al(4)C is indeed tetrahedral. The failure of nonhybrid density functional methods to correctly characterize the global minimum structure of Al(4)C demonstrates that it is dangerous to rely solely on these density functional methods in characterization of new molecules and clusters, where experimental structure is not known.  相似文献   

20.
Anisotropic particles, such as patchy, multicompartment and Janus particles, have attracted significant attention in recent years due to their novel morphologies and diverse potential applications. The non-centrosymmetric features of these particles make them a unique class of nano- or micro-colloidal materials. Patchy particles usually have different compositional patches in the corona, whereas multicompartment particles have a multi-phasic anisotropic architecture in the core domain. In contrast, Janus particles, named after the double-faced Roman god, have a strictly biphasic geometry of distinct compositions and properties in the core and/or corona. The term Janus particles, multicompartment particles and patchy particles frequently appears in the literature, however, they are sometimes misused due to their structural similarity. Therefore, in this critical review we classify the key features of these different anisotropic colloidal particles and compare structural properties as well as discuss their preparation and application. This review brings together and highlights the significant advances in the last 2 to 3 years in the fabrication and application of these novel patchy, multicompartment and Janus particles (98 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号