首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.  相似文献   

2.
Attempts have been made to evaluate the effect of interface and degree of interfacial interaction upon electrical conductivity threshold in polypropylene/expanded graphite (PP/EG) nanocomposites, and dispersion state of graphite nanosheets. For this purpose, maleic anhydride grafted polypropylene (PPgMA) and maleic anhydride grafted EPDM (EPDMgMA) were used as compatibilizer. Nanocomposite samples containing 1–5 vol% of EG were prepared by melt mixing method using laboratory scale internal mixer. Characterization was carried out by using X‐ray diffraction (XRD), differential scanning calorimeter (DSC), thermo‐gravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscope (TEM), and rheo‐mechanical spectroscopy (RMS). The conductivity measurements were carried out by using four point probe method according to ASTM D991. Results showed that the conductivity threshold is controlled by the extent of interfacial interaction between PP and EG. So, better conductivity was obtained using PPgMA as compatibilizer which causes higher level of interaction between PP and EG, and therefore better dispersion of the EG nanolayers in the polymer matrix. On the other hand, high levels of compatibilizers, especially EPDMgMA, caused formation of separated aggregates of EG shelled with the compatibilizer, which results in the reduction of conductivity of the nanocomposites. This finding has been verified by SEM, RMS, and conductivity measurements. Effects of EG nanolayers on crystalline structure and thermal decomposition temperature of the nanocomposites have also been investigated by DSC and TGA, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Obviously, the behavior of thermophysical properties of covalently functionalized CNT-based water and -based ethylene glycol (EG) nanofluids cannot be predicted from the predicted models. We present a study of the specific heat capacity, effective thermal conductivity, density, and viscosity of coolants containing functionalized multi-walled carbon nanotubes (CNT-COOH) with carboxylic acid groups at different temperatures. After synthesizing of CNT-COOH-based water and CNT-COOH-based EG nanofluids, measurements on the prepared coolant were made at various concentrations by different experimental methods. While the thermal conductivity of both nanofluids illustrated a significant increase, the specific heat capacity of both samples showed a downward behavior with increasing temperature. Although the thermal conductivity of CNT-COOH-based water nanofluids is bigger than CNT-COOH-based EG nanofluids, CNT-COOH-based water has weaker temperature dependence than that of the CNT-COOH-based EG nanofluids. The viscosity was investigated in different shear rates and temperatures. It is noteworthy that CNT-COOH-based EG nanofluids show relatively a non-Newtonian behavior. Interestingly, specific heat capacities of both prepared nanofluids were decreased with increasing concentration. Also, the density of the CNT-COOH-based water and -based EG nanofluids increased and decreased smoothly with increasing CNT-COOH concentration and temperature, respectively.  相似文献   

4.
Rosales C 《Electrophoresis》2006,27(10):1984-1995
We present a systematic numerical analysis of the thermal properties of dielectrophoretic single-cell traps. The influence of the thermal conductivity of the wall material is investigated, as well as the influence of the electrical conductivity of the liquid and the applied potential. We also explore the effect of the electrode geometry on the thermal properties of the trap. We show that substrates with thermal conductivities smaller than 100 W/mK can affect significantly the temperature increase inside the traps. Our results also show, for the first time, that for flat electrodes there is an optimum electrode to trap surface area ratio for which the ratio of temperature increase in the liquid to dielectrophoretic force on a particle can be minimized. This result will be useful in the future development of optimized dielectrophoretic traps.  相似文献   

5.
Transparent, electrically conducting nanocomposite coated polyethylene terephthalate (PET) films are prepared using two types of bulk synthesized few layered graphene; namely reduced graphene oxide (rGO) and liquid exfoliated graphite (EG) dispersed in ultra high molecular weight polyethylene (UHMWPE). This study focuses on application of high concentration of such nanofillers (1: 1 to 2.5: 1 ratios with polymer) in order to develop a highly conducting but ultrathin coating for better transparency. The coated PET films are characterized for their surface morphology, electrical and optical properties. High resolution transmission electron microscopic (HRTEM) images and corresponding selected area electron diffraction (SAED) patterns confirm that the graphite has been exfoliated to few layer graphene using both the synthesis routes. Transmittance values of these coated films are measured in UV visible spectrum. The rGO based samples have high transmittance (~90–95%) compared to EG based samples (~40–50%). From current-voltage (I?V) graph and surface resistivity studies, it has been observed that rGO based samples are dielectric in nature similar to UHMWPE while EG based samples are electrically conducting and its conductivity increases with its concentration. EG based nanocomposite coated samples show much better electrical conductivities (resistance 338 to 66 kΩ at different concentrations of EG) than rGO based samples.  相似文献   

6.
In contrast to van der Waals (vdW) forces, Coulombic dipolar forces may play a significant role in the coagulation of nanoparticles (NPs) but has received little or no attention. In this work, the effect of dipole-dipole interaction on the enhancement of the coagulation of two spherically shaped charge-neutral TiO(2) NPs, in the free molecular regime, is studied using classical molecular dynamics (MD) simulation. The enhancement factor is evaluated by determining the critical capture radius of two approaching NPs for different cases of initial dipole direction with respect to path (parallel∕perpendicular) and orientation with respect to each other (co-orientated∕counterorientated). As particle diameter decreases, the enhancement of coagulation is augmented as the ratio of dipole-dipole force to vdW force becomes larger. For 2-nm TiO(2) NPs at 273 K, the MD simulation predicts an average enhancement factor of about 8.59, which is much greater than the value of 3.78 when only the vdW force is considered. Nevertheless, as temperature increases, the enhancement factor due to dipole-dipole interaction drops quickly because the time-averaged dipole moment becomes small due to increased thermal fluctuations (in both magnitude and direction) of the instantaneous dipole moment.  相似文献   

7.
In this paper, nonequilibrium molecular dynamics simulations were performed on a single component 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine lipid bilayer in order to investigate the thermal conductivity and its anisotropy. To evaluate the thermal conductivity, we applied a constant heat flux to the lipid bilayer along and across the membrane with ambient water. The contribution of molecular interaction to the heat conduction was also evaluated. Along the bilayer plane, there is little transfer of thermal energy by the interaction between lipid molecules as compared with the interaction between water molecules. Across the bilayer plane, the local thermal conductivity depends on the constituents (i.e., water, head group, and tail group of lipid molecule) that occupy the domain. Although the intramolecular transfer of thermal energy in the tail groups of lipid molecules works efficiently to promote high local thermal conductivity in this region, the highest thermal resistance appears at the center of lipid bilayer where acyl chains of lipid molecules face each other due to a loss of covalent-bond and low number density. The overall thermal conductivities of the lipid bilayer in the directions parallel and perpendicular to the lipid membrane have been compared, and it was found that the thermal conductivity normal to the membrane is higher than that along the membrane, but it is still smaller than that of bulk water.  相似文献   

8.
A simple molecular mechanics force field for graphene (PPBE-G) was created by force matching the density functional theory Perdew-Burke-Ernzerhof forces using the adaptive force matching method recently developed in our group. The PPBE-G potential was found to provide significantly more accurate forces than other existing force fields. Several properties of graphene, such as Young's modulus, bending rigidity, and thermal conductivity, have been studied with our potential. The calculated properties are in good agreement with corresponding density functional theory and experimental values. The thermal conductivity calculated with reverse non-equilibrium molecular dynamics depends sensitively on graphene size thus requiring the simulation of large sheets for convergence. Since the PPBE-G potential only contains simple additive energy expressions, it is very computationally efficient and is capable of modeling large graphene sheets in the μm length scale.  相似文献   

9.
利用膨胀石墨(EG)经高温处理后比表面积大的特点, 以膨胀石墨作为导热填料, 通过球磨和热模压方法制备了膨胀石墨/聚醚酰亚胺(PEI)导热复合材料, 并对其加工过程、 微观形貌、 热性能和导热性能进行了研究. 结果表明, 球磨处理可以打破膨胀石墨的“泡沫”状态并减少石墨纳米片间的间隙, 热压可以诱使和促进石墨纳米片沿着水平方向排列和取向, 从而显著提升了复合材料的平面内导热性能. 当膨胀石墨在复合材料中的质量分数为20%时, EG/PEI复合材料的面内导热系数为2.38 W?m?1?K?1. 与PEI相比, 复合材料导热系数的增幅约为12倍. 所制备的EG/PEI复合材料均具有良好的散热能力、 较好的热稳定性和较高的储能模量, 是一种综合性能优异的导热材料.  相似文献   

10.
Decanoic acid/expanded graphite composite phase change materials (DA/EG-PCMs) with high stability and excellent thermal conductivity were fabricated by blending expanded graphite (EG) and decanoic acid (DA). The structure, thermo-physical properties, and the formation mechanism of DA/EG-PCMs were investigated. The obtained results demonstrate that EG exhibits a network-like porous structure, which is superimposed of 10–50 μm thick graphite sheet. Therefore, DA can be effectively encapsulated through the binding between micropores and the surface adsorption of EG resulting in a relatively smaller DA/EG-PCMs particle with better dispersibility. In addition, adding EG into DA also increased both the thermal stability and the thermal conductivity while decreasing the charging and discharging time, which resulted in improved thermal efficiencies. Although adding EG can negatively influence the phase change behavior of DA, the temperature and enthalpy of phase change were still as high as 34.9 °C and 153.1 J g?1, respectively. Based on a combination of experimental results and a comprehensive analysis of the phase transformation kinetics, it is concluded that DA/EG-PCMs with 10 mass% EG with improved thermal properties can meet the requirements for efficient temperature control in low-to-medium environments.  相似文献   

11.
Ionic liquid 1‐allyl‐3‐methyl‐imidazolium chloride (AMICl) is used to fine‐tune the surface properties of graphene oxide (GO) sheets for fabricating ionic liquid functionalized GO (GO‐IL)/styrene‐butadiene rubber (SBR) nanocomposites. The morphology and structure of GO‐IL are characterized using atomic force microscope, X‐ray diffraction, differential scanning calorimetry, X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV‐vis spectra and Raman spectra. The interaction between GO and AMICl molecules as well as the effects of GO‐IL on the mechanical properties, thermal conductivity and solvent resistance of SBR are thoroughly studied. It is found that AMICl molecules can interact with GO via the combination of hydrogen bond and cation–π interaction. GO‐IL can be well‐dispersed in the SBR matrix, as confirmed by X‐ray diffraction and scanning electron microscope. Therefore, the SBR nanocomposites incorporating GO‐IL exhibit greatly enhanced performance. The tensile strength, tear strength, thermal conductivity and solvent resistance of GO‐IL/SBR nanocomposite with 5 parts per hundred rubber GO‐IL are increased by 505, 362, 34 and 31%, respectively, compared with neat SBR. This method provides a new insight into the fabrication of multifunctional GO‐based rubber composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A novel least-squares fitting approach is presented to obtain classical force fields from trajectory and force databases produced by ab initio (e.g., Car-Parrinello) molecular dynamics (MD) simulations. The method was applied to derive effective nonpolarizable three-site force fields for liquid water at ambient conditions from Car-Parrinello MD simulations in the Becke-Lee-Yang-Parr approximation to the electronic density functional theory. The force-matching procedure includes a fit of short-ranged nonbonded forces, bonded forces, and atomic partial charges. The various parameterizations of the water force field differ by an enforced smooth cut-off applied to the short-ranged interaction term. These were obtained by fitting to the trajectory and force data produced by Car-Parrinello MD simulations of systems of 32 and 64 H(2)O molecules. The new water force fields were developed assuming both flexible or rigid molecular geometry. The simulated structural and self-diffusion properties of liquid water using the fitted force fields are in close agreement with those observed in the underlying Car-Parrinello MD simulations. The resulting empirical models compare to experiment much better than many conventional simple point charge (SPC) models. The fitted potential is also shown to combine well with more sophisticated intramolecular potentials. Importantly, the computational cost of the new models is comparable to that for SPC-like potentials.  相似文献   

13.
Paraffin (PA)/expanded graphite (EG) is an important composite phase change material with low cost, high heat storage, good thermal conductivity and cycling stability. Its thermal conductivity needs to be further improved for application in the thermal management system of power lithium-ion batteries. In this paper, copper plated expanded graphite (CPEG) with 3D porous structure was prepared by electroless copper plating method, which was used as thermal conductivity enhancing material to replace part of EG in PA/EG composite materials. For the optimized phase change material composed of 80 %PA-14 %EG-6 %CPEG, the copper content is very low (0.768 wt %), but its thermal conductivity can be significantly improved without loss of latent heat and thermal cycling stability. Its thermal conductivity is increased from 11 times to 16.5 times that of paraffin while compared with the copper-free composite material (80 %PA-20 %EG). The PA/EG/CPEG composite material exhibits good temperature control effect on power lithium-ion batteries.  相似文献   

14.

Solar PV panel cooling is essential to achieve maximum efficiency of PV modules. Phase-change material (PCM) is one of the prominent options to cool the panel and reduce the temperature, since PCMs have low thermal conductivity. Expanded graphite particles are used to enrich the structure and stability as well as to increase the thermal properties. In the present research work, polyethylene glycol (PEG) 1000 is used as a base material and expanded graphite for inclusive particle. A novel form-stable PEG1000/EG composite PCM mixture is prepared, using impregnation and dispersion method. Expanded graphite and PEG1000/EG sample phase compositions are investigated, using X-ray diffraction technique. No new peak is identified in the composite PCM sample. The surface morphology and structure of EG and PEG1000/EG are investigated, using scanning electron microscopy (SEM). Chemical stability analysis is done by Fourier-transform infrared spectroscopy. Thermal properties of the prepared composite PCMs are analysed by differential scanning calorimetry, thermogravimetric analysis (TGA) and KD2 pro analyser. Results show that addition of EG in various propositions (5%, 10% and 15%) enhances the thermal conductivity of PCM samples from 0.3654 to 1.7866 W mK?1, while melting point and latent heat of fusion of PCM samples are getting reduced. TGA thermographs are used to investigate the thermal stability of the composite PCM samples. TGA curves show that loss of mass happens above the operating temperature, and it is varied with different mass ratios of EG. Characterization of the prepared composite PCM samples is compared and found that PEG1000-85%/EG-15% is the best form-stable PCM, suitable for cooling the solar PV panel as well as to improve the electrical efficiency coupled with a decrease of temperature in the range of 35 °C to 40 °C.

  相似文献   

15.
The application of nanofluids in energy systems is developing day by day. Before using a nanofluid in an energy system, it is necessary to measure the properties of nanofluids. In this paper, first the results of experiments on the thermal conductivity of MgO/ethylene glycol (EG) nanofluids in a temperature range of 25–55 °C and volume concentrations up to 5 % are presented. Different sizes of MgO nanoparticles are selected to disperse in EG, including 20, 40, 50, and 60 nm. Based on the results, an empirical correlation is presented as a function of temperature, volume fraction, and nanoparticle size. Next, the model of thermal conductivity enhancement in terms of volume fraction, particle size, and temperature was developed via neural network based on the measured data. It is observed that neural network can be used as a powerful tool to predict the thermal conductivity of nanofluids.  相似文献   

16.
The aim of the present work is to investigate the thermal response of PolyEthylene Glycol 1000 (PEG1000) and of its mixtures with the monomer Ethylene Glycol (EG). On purpose Attenuated Total Reflectance Infra-Red (ATR-IR) spectra were collected, in the spectral range spanning from 400 cm−1 to 4000 cm−1, on PEG1000 and on its mixtures with EG, as a function of concentration and temperature, through positive thermal scans, i.e. by increasing temperature. It will be shown that ATR-IR technique reveals a powerful tool for the characterization of the thermal response in polymeric systems. The registered spectra have been analyzed both on the whole investigated spectral range, as well as, separately, on the restricted intramolecular OH stretching vibrational contribution region. In the first case the displacement of the spectral features from the spectrum at the lowest temperature, taken as reference spectrum, shows a lower dependence for the mixture. As far as the intramolecular OH vibrational contribution is concerned, besides a conventional analysis in terms of band components, three different data analysis procedures have been applied, i.e. the characterization of the temperature dependence of the intramolecular OH stretching center frequency, of the spectral distance and of the wavelet cross correlation coefficient. The three applied data analysis approaches indicates that the addition of a small amount of pure EG to PEG1000 significantly influences the OH vibrational properties of the PEG1000 polymeric matrix. The three different methods furnish a unique coherent interpretative picture which supports the validity of the applied approaches. Furthermore, the analyses show the presence of a higher thermal restraint for the PEG + EG mixture which confirms that, within the three-dimensional networks of hydrogen bonded EG-PEG1000 mixtures, a key role is played by EG in determining an increase of the hydrogen bond network density.  相似文献   

17.
Fundamental transport properties of liquid para-hydrogen (p-H(2)), i.e., diffusion coefficients, thermal conductivity, shear viscosity, and bulk viscosity, have been evaluated by means of the path integral centroid molecular dynamics (CMD) calculations. These transport properties have been obtained over the wide temperature range, 14-32 K. Calculated values of the diffusion coefficients and the shear viscosity are in good agreement with the experimental values at all the investigated temperatures. Although a relatively large deviation is found for the thermal conductivity, the calculated values are less than three times the amount of the experimental values at any temperature. On the other hand, the classical molecular dynamics has led all the transport properties to much larger deviation. For the bulk viscosity of liquid p-H(2), which was never known from experiments, the present CMD has given a clear temperature dependence. In addition, from the comparison based on the principle of corresponding states, it has been shown that the marked deviation of the transport properties of liquid p-H(2) from the feature which is expected from the molecular parameters is due to the quantum effect.  相似文献   

18.
19.
ABSTRACT

Expanded graphite (EG)/LiCl-NaCl phase change composites are prepared by aqueous solution method with different EG amount and forming pressure to enhance heat conduction for high-temperature latent heat thermal energy storage application. Their microstructure and thermal conductivity are characterized. Results indicate that the composites are uniform and the LiCl-NaCl eutectic is well dispersed in the graphite flakes. Thermal conductivity of the LiCl-NaCl can increase to as much as 40.51 W/(m·K), which is 46 times higher than that of pure eutectic salt. With forming pressure, the thermal conductivities of the samples show anisotropy because of a flattened irregular honeycomb network of graphite. Within certain limits, the greater the forming pressure is, the more pronounced the anisotropy performs. In addition, the formulas to calculate the thermal conductivity in the axial direction and the radial direction are given based on the average rotation angle φ of EG basal plane, and experimental data show that the formula in the radial direction is especially useful for calculating the thermal conductivity.  相似文献   

20.
Thermal conductivity is an important parameter in the field of nanofluid heat transfer. This article presents a novel model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions, particle size and interfacial shell properties. According to this model, thermal conductivity changes nonlinearly with nanoparticle loading. The results are in good agreement with the experimental data of alumina-water and alumina-ethylene glycol based nanofluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号