共查询到20条相似文献,搜索用时 5 毫秒
1.
María Beatriz de la Calle Guntiñas Michiel Ceulemans Claudia Witte Ryszard Łobiński Freddy C. Adams 《Mikrochimica acta》1995,120(1-4):73-82
A method is presented for the selective determination of the volatile selenium species dimethylselenide and dimethyldiselenide, using a commercially available purge-and-trap injection system coupled to capillary gas chromatography-microwave induced plasma-atomic emission spectrometry. The efficiency of the purging step was evaluated and the parameters affecting the purge and trap processes were optimized. The method was applied to the determination of volatile selenium compounds in lake water. Relative detection limits of 2ng/l for dimethylselenide and dimethyldiselenide, corresponding to an absolute detection limit of 10 pg, were achieved. 相似文献
2.
V. Minganti R. Capelli R. De Pellegrini 《Fresenius' Journal of Analytical Chemistry》1995,351(4-5):471-477
A multi-element, element-specific detector for gas chromatography (GC) based on atomic emission spectroscopy (AES) with a microwave induced plasma (MIP) source was tested on some environmental samples. As derivatization procedure, direct aqueous phase ethylation and chelation/extraction followed by Grignard reaction were tested on the following ions: methylmercury, ethylmercury, phenylmercury, mercury(II), trimethyllead, dimethyllead, lead(II), trimethyltin, dimethyltin, triethyltin, tripropyltin, tributyltin, dibutyltin, butyltin, and tin(IV). For mercury species a direct aqueous phase phenylation was successfully tested. The different methods of derivatization are compared, and the performance (sensitivity, linearity) of the GC-MIP-AES system is discussed. Some examples of application to environmental samples (biological tissues) are given. 相似文献
3.
A novel and simple flow-based method was developed for the simultaneous determination of As(III) and As(V) in freshwater samples. Two miniature columns with a solid phase anion exchange resin, placed on two 6-way valves were utilized for the solid-phase collection/concentration of arsenic(III) and arsenic(V), respectively. As(III) could be retained on the column after its oxidation to As(V) species with an oxidizing agent. The collected analytes were then sequentially eluted by 2 M nitric acid and introduced into ICP-AES. Potassium permanganate was examined as potential oxidizing agent for conversion of As(III) to As(V). The standard deviation of the analytical signals (peak height) for the replicate analysis (n = 5) of 0.5 μg l−1 solution were 3 and 5% for As(III) and As(V), respectively. The limit of detection (3σ) for both As(III) and As(V) were 0.1 μg l−1. The proposed system produced satisfactory results on the application to the direct analysis of inorganic arsenic species in freshwater samples. 相似文献
4.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results. 相似文献
5.
On-line preconcentration and simultaneous determination of heavy metal ions by inductively coupled plasma-atomic emission spectrometry 总被引:2,自引:0,他引:2
A flow injection analysis system for on-line preconcentration and simultaneous determination of Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ in aqueous samples by inductively coupled plasma (ICP)-atomic emission spectrometry with a charge coupled detector is described. The preconcentration of analytes is accomplished by retention of their chelates with sodium diethyldithiocarbamate in aqueous solution on a solid phase containing octadecyl silica in a minicolumn. Methanol, as eluent, is introduced into the conventional nebulizer of the ICP instrument. The effects of different parameters, including preconcentration flow rate (equal to sample flow rate (SR)), eluent flow rate (ER), weight of solid phase (W) and eluent loop volume (EV), were optimized by the super-modified simplex method. The optimum conditions were evaluated to be SR 7.2 ml min−1, ER 3.5 ml min−1, W of 100 mg and EV of 0.8 ml. An enrichment factor of 312.5 for each analyte was obtained. The detection limits of the proposed method for Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ were evaluated as 1.3, 1.0, 0.8, 0.3, 14.7, 0.5, 5.5 and 0.1 ng l−1, respectively. The effect of several metal ions on percent recovery was also studied. The method was applied to the recovery of these heavy metals from real matrices and to the simultaneous determination of these cations in different water samples. 相似文献
6.
Claudia Gerbersmann Monika Heisterkamp Freddy C. Adams JoséA.C. Broekaert 《Analytica chimica acta》1997,350(3):50-285
In this paper a novel approach for the speciation analysis of mercury (methyl mercury and mercury II) in fish tissue using gas chromatography-microwave induced plasma atomic emission spectromertry is described. Focused microwave-assisted digestion which has been used previously in speciation analysis only for the determination of organotin and organoselenium compounds, was applied for sample preparation, a technique which enables mild, quick and complete dissolution of the sample. The important parameters for the digestion of fish tissues were optimised for the given analytical problem. Since no experience was available for the further treatment of the produced sample solution two different derivatisation/injection procedures were examined:
- 1. (1) ethylation with sodium tetraethylborate, extraction into hexane and injection with a cooled injection system and
- 2. (2) hydride generation with sodium tetrahydroborate together with purge-and-trap injection. The latter reaction has not been used previously for the determination of mercury species in fish samples.
7.
M. Ceulemans R. Łobiński W. M. R. Dirkx F. C. Adams 《Analytical and bioanalytical chemistry》1993,347(6-7):256-262
8.
Improved sensitivity of the cold-vapour atomic absorption method for mercury can be obtained by equilibrating the reduced sample with a small volume of air at 90°C. An automated system has been developed that has a detection limit of 1 ng Hg l-1. By changing the reducing conditions three species of mercury can be differentiated and determined, inorganic mercury, arylmercury compounds such as phenylmercury(II) chloride, and alkylmercury compounds such as methylmercury(II) chloride. Speciation of mercury in natural waters is possible. 相似文献
9.
Judith Savoie Richard St-Louis Marie Clément 《International journal of environmental analytical chemistry》2018,98(6):582-591
An analytical procedure was developed to quantify mercury concentration in wild Atlantic salmon (Salmo salar) muscle tissue by cold-vapour microwave plasma-atomic emission spectrometry (CV-MP-AES) with microwave-assisted acid digestion. Muscle samples were collected from the Atlantic salmon Food, Social, and Ceremonial fisheries in Lake Melville, Labrador (Canada). Muscle samples were digested with nitric acid and hydrogen peroxide, mercury was stabilised with thiourea, reduced with NaBH4, and quantified by CV-MP-AES. Analysis of fish protein certified reference material (CRM, DORM-3) by CV-MP-AES was used to assess the accuracy and precision of the procedure. CRM recovery averaged 88% with a relative standard deviation of less than 8%. The limits of detection were as low as 0.22 µg?L?1 in solution which translate to 0.02 µg·g?1. Mercury concentrations in salmon muscle tissue quantified by CV-MP-AES were not significantly different from results obtained by cold vapour-atomic fluorescence spectrometry (CV-AFS) from an accredited laboratory. Our results indicated that the CV-MP-AES procedure is appropriate for the quantification of mercury at background levels (range 0.15–0.29 µg?g?1 dry weight) in wild fish of Labrador. 相似文献
10.
Sanz J Raposo JC Larreta J Martinez-Arkarazo I de Diego A Madariaga JM 《Journal of separation science》2004,27(14):1202-1210
Inorganic mercury and methylmercury are determined in natural waters by injecting the filtered samples onto a low cost commercial flow injection system in which an anion exchange microcolumn is inserted after the injection loop (FIA-IE). If hydrochloric acid is used as the carrier solution, the HgCl4(2-) species (inorganic mercury) will be retained by the anion exchanger while the CH3HgCI species (methylmercury) will flow through the resin with negligible retention. Four anion exchangers and seven elution agents were checked, in a batch mode, to search for the best conditions for optimal separation and elution of both species. Dowex M-41 and L-cysteine were finally selected. Mercury detection was performed by cold vapour-electrothermal atomic adsorption spectrometry (HG-ETAAS). Both systems were coupled to perform the continuous on-line separation/detection of both inorganic mercury and methylmercury species. Separation and detection conditions were optimized by two chemometric approaches: full factorial design and central composite design. A limit of detection of 0.4 microg L(-1) was obtained for both mercury species (RSD < 3.0% for 20 microg L(-1) inorganic and methylmercury solutions). The method was applied to mercury speciation in natural waters of the Nerbioi-lbaizabal estuary (Bilbao, North of Spain) and recoveries of more than 95% were obtained. 相似文献
11.
V. Balarama Krishna Mullapudi Nidhi Garg Dheeram Karunasagar 《International journal of environmental analytical chemistry》2018,98(9):811-829
A novel and simple microprecipitation method was developed for the preconcentration of ultra-trace quantities of inorganic and methyl mercury species (iHg and MeHg) prior to their determination by cold vapour atomic absorption spectrometry (CVAAS). This method is based on the formation of anionic complexes of Hg2+ with KI followed by ion-associate complex with cetyltrimethyl ammonium bromide (CTAB) that forms a fluffy precipitate in perchloric acid medium. As a result, a fluffy coagulated mass separates and collects at the top of the liquid surface with clear phase separation without need of cooling or heating or centrifugation. The ion-association complex of iHg was then extracted into surfactant-rich phase (top layer) of CTAB-perchlorate precipitate while the uncomplexed MeHg remained in the aqueous phase (bottom layer). This condition also facilitates the removal of aqueous phase by simply draining out. The fluffy mass formed was dissolved in a mixture of HNO3 and HCl which was subsequently treated with chloroform to separate the surfactant from the mixture. Then the aqueous phase containing the preconcentrated iHg was analysed for mercury by CVAAS. Key factors such as sample pH, concentration of KI and CTAB that affect the performance of the proposed microprecipitation method were thoroughly investigated. For the determination of total mercury, another fresh aliquot of water was initially adjusted to pH ~ 3.5 with perchloric acid and subjected to oxidation by using modified UV-irradiation set-up and then taken through the microprecipitation procedure. This method allows speciation of mercury with a preconcentration factor of 200 and the limits of detection (LOD) of mercury obtained for CVAAS in conjunction with the present preconcentration method was found to be 2.4 ng L?1. Average recoveries obtained with the proposed approach were found to be in the range of 96–104% with RSD values < 5%. The interfering effects of various cations and anions were also investigated. The method was successfully applied for the determination of ultra-trace quantities of mercury species in real samples such as bottled water, tap water, lake water and ground waters. 相似文献
12.
Wuilloud RG González AH Marchevsky EJ Olsina RA Martinez LD 《Journal of AOAC International》2001,84(5):1555-1560
An on-line lead preconcentration and determination system implemented with inductively coupled plasma-atomic emission spectrometry (ICP-AES) with ultrasonic nebulization (USN) in association with flow injection was studied. For the preconcentration of lead, a Pb-quinolin-8-ol complex was formed on-line at pH 6.8 and retained on Amberlite XAD-16 resin. The lead was removed from the microcolumn by countercurrent elution with nitric acid. A total enhancement factor of 225 was obtained with respect to ICP-AES with pneumatic nebulization (15.0 for USN and 15.0 for the column). The detection limit for Pb for the preconcentration of a 10 mL wine sample was 0.15 microg/L. The precision for 10 replicate determinations at a Pb level of 25 microg/L was a relative standard deviation of 2.5%, calculated from the peak heights obtained. The calibration graph obtained by using the preconcentration system for lead was linear with a correlation coefficient of 0.9995 for levels near the detection limit up to > or = 1000 microg/L. The method was successfully applied to the determination of lead in wine samples. 相似文献
13.
Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2′-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4 M HNO3. The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 μmol g−1 for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 μg L−1 (3σ), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 μg L−1 Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample. 相似文献
14.
Katsuhiko Yokoi Mieko Kimura Yoshinori Itokawa 《Fresenius' Journal of Analytical Chemistry》1990,336(5):423-424
Conclusion The detachable miniature hydride generator presented in this work gives the analytical chemist easy access to the determination of ultratrace levels of tin and germanium using a 1.2 kW-ICP spectrometer commercially available. An improvement of the detection limits of approximately 100 times those for conventional pneumatic nebulizer-ICP-AES, has been reported in this work. 相似文献
15.
《Spectrochimica Acta Part B: Atomic Spectroscopy》1999,54(5):873-881
Selective sorption of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a microcolumn packed with C16-bonded silica gel phase was used for the determination of Sb(III) and of total inorganic antimony after reducing Sb(V) to Sb(III) by l-cysteine. A flow injection system composed of a microcolumn connected to the tip of the autosampler was used for preconcentration. The sorbed antimony was directly eluted with ethanol into the graphite furnace and determined by AAS. The detection limit for antimony was significantly lowered to 0.007 μg l−1 in comparison to 1.7 μg l−1 for direct injection GFAAS. This procedure was applied for speciation determinations of inorganic antimony in tap water, snow and urine samples. For the investigation of long-term stability of antimony species a flow injection hydride generation atomic absorption spectrometry with quartz tube atomization (FI HG QT AAS) and GFAAS were used for selective determination of Sb(III) in the presence of Sb(V) and total content of antimony, respectively. Investigations on the stability of antimony in several natural samples spiked with Sb(III) and Sb(V) indicated instability of Sb(III) in tap water and satisfactory stability of inorganic Sb species in the presence of urine matrix. 相似文献
16.
17.
V. Siemens T. Harju T. Laitinen K. Larjava J. A. C. Broekaert 《Fresenius' Journal of Analytical Chemistry》1995,351(1):11-18
The applicability of microwave-induced plasma optical emission spectrometry (MIP-OES) for continuous monitoring of the environmentally hazardous element mercury in flue gases has been studied. Microwave induced plasmas have been sustained using both a TM010 cavity (Beenakker resonator) and a so-called Surfatron. The analytical figures of merit for mercury in argon and helium discharges with both types of low-power micro-wave discharges have been examined. To determine mercury in artificial stack gases non-mixed argon/nitrogen discharges have been tested using a tangential flow torch design which allows to introduce a metal-loaded nitrogen gas flow as external gas and argon as internal gas. The addition of main flue gas components such as water vapour (concentration <6 g/m3), oxygen (<4% v/v) and carbon dioxide (<15% v/v) decrease the mercury line intensities to a considerable extent. Trace gases (CO, HCl, SO2, NO) in concentrations typical to waste incineration processes have been found to have no effect on the mercury and the argon line intensities. The detection limit of mercury in nitrogen is 8 g/m3 using the TM010 MIP and 10 g/m3 using the Surfatron. As such low detection limits are below the emission limit values of present-day environmental legislation MIP-OES is useful for on-line monitoring of mercury.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday 相似文献
18.
Villa-Lojo MC Alonso-Rodríguez E López-Mahía P Muniategui-Lorenzo S Prada-Rodríguez D 《Talanta》2002,57(4):741-750
A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples. 相似文献
19.
A laboratory-built spray chamber featuring aerosol collection at the centre of the chamber by means of a funnel is described and compared with a commercially available, dual tube chamber. The influence of some chamber design parameters on the emission signal intensity and stability, the nebulizer efficiency and chamber clean-out time is studied. 相似文献
20.
Hg(II)-imprinting thiol-functionalized mesoporous sorbent was prepared by a sol–gel method and characterized by X-ray diffraction (XRD), FT-IR spectroscopy and nitrogen gas adsorption–desorption. The static adsorption capacity of the Hg(II)-imprinted and non-imprinted sorbent was 78.5 and 26.6 mg g−1, respectively. The breakthrough capacity was 4.46 mg g−1, and the relative selectivity coefficient for Hg(II) in the presence of Cd and Pb was 3.3 and 3.9, respectively. A new method using a micro-column packed with Hg(II)-imprinting thiol-functionalized mesoporous sorbent has been developed for preconcentration of trace mercury prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analyte have been investigated. The limit of detection was 0.39 ng ml−1 with a concentration factor of 150 times. The developed method has been applied to the determination of trace mercury in some biological and environmental samples with satisfactory results. The accuracy was assessed through recovery experiments and analysis of certified reference material. 相似文献