首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are demonstrating a cost-effective multichannel capillary electrophoresis system for a high-efficiency double-stranded DNA (dsDNA) fragments analysis. This bench-type high-performance DNA analysis (HDA) system uses fluorescence-type detection with inexpensive solid-state light sources and nonmoving integrated emission collection micro-optics. DNA samples are analyzed simultaneously by using a multiple usage and disposable multicapillary cartridge, which contains integrated capillary channels, optical fibers and an integrated sieving gel reservoir. Using commercially available dsDNA size markers as indicators, the HDA system provides high resolving power in 7 min separations. The system can hold a total of 192 samples in two 96-well polymerase chain reaction (PCR) plates, which can be automatically analyzed within 2.5 h. This affordable system can be used in laboratories to replace slab gel electrophoresis for routine and high-throughput dsDNA analysis.  相似文献   

2.
A species-specific endogenous reference gene system was developed for polymerase chain reaction (PCR)-based analysis in common wheat (Triticum aestivum L.) by targeting the ALMT1 gene, an aluminium-activated malate transporter. The primers and probe were elaborated for real-time PCR-based qualitative and quantitative assay. The size of amplified product is 95 base pairs. The specificity was assessed on 17 monocot and dicot plant species. The established real-time PCR assay amplified only T. aestivum-derived DNA; no amplification occurred on other phylogenetically related species, including durum wheat (T. durum). The robustness of the system was tested on the DNA of 15 common wheat cultivars using 20 000 genomic copies per PCR the mean cycle threshold (Ct) values of 24.02 +/- 0.251 were obtained. The absolute limits of detection and quantification of the real-time PCR assay were estimated to 2 and 20 haploid genome copies of common wheat, respectively. The linearity was experimentally validated on 2-fold serial dilutions of DNA from 650 to 20 000 haploid genome copies. All these results show that the real-time PCR assay developed on the ALMT1 gene is suitable to be used as an endogenous reference gene for PCR-based specific detection and quantification of T. aestivum-derived DNA in various applications, in particular for the detection and quantification of genetically modified materials in common wheat.  相似文献   

3.
A miniaturized, integrated and automated system based on capillary fluidics has been developed for nanoliter DNA analysis directly from cheek cells. All steps for DNA analysis, including injecting aqueous reagents and DNA samples, mixing the solutions together, thermal cell lysis, polymerase chain reaction (PCR), transfer and injection of PCR product, separation, sizing and detection of those products are performed in a capillary-based integrated system. A small amount of cheek cells collected by a plastic toothpick is directly dissolved in the PCR cocktail in a plastic vial or mixed on-line with a small volume of PCR cocktail (125 nl) in the capillary. After thermal cell lysis and PCR in a microthermal cycler, the DNA fragments are mixed with DNA size standards and transferred to a micro-cross for injection and separation by capillary gel electrophoresis. Programmable syringe pumps, switching valves, multiposition and freeze-thaw valves are used for microfluidic control in the entire system. This work establishes the feasibility of performing all the steps of DNA analysis from real samples in a capillary-based nanoliter integrated system.  相似文献   

4.
We developed a method for the analysis of multiplexed double-stranded DNA (dsDNA) samples complexed to various intercalating dyes using entangled polymer solution. A commercial single-column capillary electrophoresis (CE) instrument with diode array detection was used for multiplexed detection of DNA samples by addition of intercalating fluorescent molecules. A Phi X174HinfI and a pGEM DNA ladder (1 mg/mL) were used for the electrophoretic separation of dsDNA fragments ranging in size from 24 to 726 and 36 to 2645 bp, respectively. The results suggested that simultaneous electrophoretic separation of different DNA ladders multiplexed with different dyes could be performed in the same capillary yielding fast DNA sizing separations. CE analysis, which is often overpowered by slab gel in sample throughput, could now overcome this disadvantage by allowing multiplexed sample analysis in a fraction of the time needed for slab gel analysis. The separation efficiency of stained DNA molecules with both dyes were dramatically improved with buffers containing a large cation such as tetrapentylammonium ion (Npe(4) (+)) as the only cation in the buffer.  相似文献   

5.
Microfluidic technology has been utilized in the development of a modular system for DNA identification through STR (short tandem repeat) analysis, reducing the total analysis time from the ∼6 h required with conventional approaches to less than 3 h. Results demonstrate the utilization of microfluidic devices for the purification, amplification, separation and detection of 9 loci associated with a commercially-available miniSTR amplification kit commonly used in the forensic community. First, DNA from buccal swabs purified in a microdevice was proven amplifiable for the 9 miniSTR loci via infrared (IR)-mediated PCR (polymerase chain reaction) on a microdevice. Microchip electrophoresis (ME) was then demonstrated as an effective method for the separation and detection of the chip-purified and chip-amplified DNA with results equivalent to those obtained using conventional separation methods on an ABI 310 Genetic Analyzer. The 3-chip system presented here demonstrates development of a modular, microfluidic system for STR analysis, allowing for user-discretion as to how to proceed after each process during the analysis of forensic casework samples.  相似文献   

6.
As the human genome project proceeds, various types of DNA analysis tools are required for life sciences and medical sciences including DNA diagnostics. For example, a small DNA sequencer for sequencing a short DNA is required for bed-side DNA testing as well as DNA analysis in a small laboratory. Here, a new handy DNA sequencing system (pyrosequencer) based on the detection of inorganic pyrophosphate (PPi) released by polymerase incorporation is demonstrated. The system uses the bioluminescence detection system. The key point for the miniaturized DNA sequencer is to make a deoxynucleotide triphosphate (dNTP) delivery system small and inexpensive. It has been realized by using narrow capillaries to connect a reaction chamber and four dNTP reservoirs. Each dNTP is introduced into the reaction chamber by applying a pressure to the reservoir. Compared with other microdispensers, it is much cheaper and easier. By optimizing the conditions, an excellent sequencing ability is achieved while it is a simple and inexpensive system. In most cases, more than 40 bases can be successfully sequenced. A homopolymeric region, which can not be easily sequenced by a conventional gel-based DNA sequencer, is readily sequenced with this system. The new system is successfully applied to sequence a GC rich region or a region close to a priming region where misreading frequently occurs. A rapid analysis for a short DNA was easily achieved with this small instrument.  相似文献   

7.
In this work, batch injection analysis with the amperometric detection (BIA‐AD), employing a detection cell designed to adapt a screen‐printed carbon electrode (SPCE) was used for the first time as a robust electroanalytical system for DNA biosensing applications. The sensitive amperometric detection was used to evaluate the structural changes in double‐stranded DNA (dsDNA) after UV‐C irradiation of its solution for a given time. Batching of DNA samples was performed by precise electronic pipette microinjection of an irradiated sample aliquot onto the unmodified activated SPCE surface incorporated in the BIA‐AD system. Using the optimized experimental conditions (40 μL of 1 mg mL?1 dsDNA in a 0.1 M phosphate buffer of pH 7.4 sampled at the injection speed degree of 6 and detected at the potential of +1.5 V vs silver pseudo‐reference electrode), a time‐dependent response (gradual decrease of amperometric signal up to 58 % after 10 min of the irradiation) was found for the detection of damage to low molecular weight salmon sperm dsDNA. The advantages of this low‐dimensional and cost‐effective measuring system can be utilized not only for the quantification of DNA damage/degradation by UV irradiation, but they are also promising for studying other types of DNA interactions.  相似文献   

8.
A novel fluorescence polarization (FP) aptasensing platform based on target-induced aptamer enzymatic cleavage protection is reported. The method relies on the FP analysis of the phosphodiesterase I mediated size variation of a dye-labeled aptamer. The tyrosinamide/antityrosinamide DNA aptamer couple was firstly tested as a model system to establish the proof-of-concept. In the absence of the target, the labeled aptamer was enzymatically cleaved into small DNA fragments, leading to a low FP signal. Upon tyrosinamide binding, the DNA substrate was partially protected against the enzymatic attack, leading to an increase in the fluorescence anisotropy response as a result of the higher average molecular volume of the weakly digested probe. The method was subsequently applied to two other systems, i.e., for the detection of ochratoxin A and adenosine. Such an approach was found to combine simplicity and general applicability features.  相似文献   

9.
A multi‐channel microchip electrophoresis using a programmed step electric field strength (PSEFS) method was investigated for fast parallel detection of feline panleukopenia virus (FPV) DNA. An expanded laser beam, a 10× objective lens, and a charge‐coupled device camera were used to simultaneously detect the separations in three parallel channels using laser‐induced fluorescence detection. The parallel separations of a 100‐bp DNA ladder were demonstrated on the system using a sieving gel matrix of 0.5% poly(ethylene oxide) (Mr = 8 000 000) in the individual channels. In addition, the PSEFS method was also applied for faster DNA separation without loss of resolving power. A DNA size marker, FPV DNA sample, and a negative control were simultaneously analyzed with single‐run and one‐step detection. The FPV DNA was clearly distinguished within 30 s, which was more than 100 times faster than with conventional slab gel electrophoresis. The proposed multi‐channel microchip electrophoresis with PSEFS was demonstrated to be a simple and powerful diagnostic method to analyze multiple disease‐related DNA fragments in parallel with high speed, throughput, and accuracy.  相似文献   

10.
Considering rarity of circulating tumor cells (CTCs) in human blood, the development of highly sensitive detection techniques for cancer cells is crucial for prediction, diagnosis, and prognosis of cancers. In this study, we propose an advanced cellular detection method by combining a biobarcode assay and microcapillary electrophoresis (μCE) technology. While the DNA biobarcode assay can provide ultrasensitive and multiplex detection platforms, the μCE chip can analyze barcode DNAs with high speed and accuracy according to the DNA size. We designed the barcode DNA size as 20 bp for indicating the expression of epithelial cell adhesion molecules (EpCAM) biomarkers and 30 bp for assigning CDX2 expression which is specific for colorectal cancer cells with addition to two bracket ladders (15 and 45 bp). Using MCF‐7 (breast cancer) and SW620 (colorectal cancer) as models, we conducted a biobarcode assay and analyzed the resultant biobarcode DNA on the μCE chip. We could detect the 20 bp CE peak in the electropherogram even with ten MCF‐7 and SW620 cells in a volume of 200 μL, thereby demonstrating the highly sensitive detection of cancer cells. We furthermore identified the type of colorectal cancer by observing two positive peaks (20 bp for EpCAM and 30 bp for CDX2) in the μCE analysis.  相似文献   

11.
Self‐assembled DNA nanostructures with precise sizes allow a programmable “soft lithography” approach to engineer the interface of electrochemical DNA sensors. By using millimeter‐sized gold electrodes modified with several types of tetrahedral DNA nanostructures (TDNs) of different sizes, both the kinetics and thermodynamics of DNA hybridization were profoundly affected. Because each DNA probe is anchored on an individual TDN, its lateral spacing and interactions are finely tuned by the TDN size. By simply varying the size of the TDNs, the hybridization time was decreased and the hybridization efficiency was increased. More significantly, the detection limit for DNA detection was tuned over four orders of magnitude with differentially nanostructured electrodes, and achieved attomolar sensitivity with polymeric enzyme amplification.  相似文献   

12.
A simple and fast method with high reliability is necessary for the identification of mutations, polymorphisms and sequence variants (MPSV) within many genes and many samples, e.g. for clarifying the genetic background of individuals with multifactorial diseases. Here we review our experience with the polymerase chain reaction/single-strand conformation polymorphism (PCR/SSCP) analysis to identify MPSV in a number of genes thought to be involved in the pathogenesis of multifactorial neurological disorders, including autoimmune diseases like multiple sclerosis (MS) and neurodegenerative disorders like Parkinson s disease (PD). The method is based on the property of the DNA that the electrophoretic mobility of single stranded nucleic acids depends not only on their size but also on their sequence. The target sequences were amplified, digested into fragments ranging from 50-240 base pairs (bp), heat-denatured and analysed on native polyacrylamide (PAA) gels of different composition. The analysis of a great number of different PCR products demonstrates that the detection rate of MPSV depends on the fragment lengths, the temperature during electrophoresis and the composition of the gel. In general, the detection of MPSV is neither influenced by their location within the DNA fragment nor by the type of substitution, i.e., transitions or transversions. The standard PCR/SSCP system described here provides high reliability and detection rates. It allows the efficient analysis of a large number of DNA samples and many different genes.  相似文献   

13.
The potential ability of atomic force microscopy (AFM) as a quantitative bioanalysis tool is demonstrated by using gold nanoparticles as a size enhancer in a DNA hybridization reaction. Two sets of probe DNA were functionalized on gold nanoparticles and sandwich hybridization occurred between two probe DNAs and target DNA, resulting in aggregation of the nanoparticles. At high concentrations of target DNA in the range from 100 nM to 10 μM, the aggregation of gold nanoparticles was determined by monitoring the color change with UV-vis spectroscopy. The absorption spectra broadened after the exposure of DNA–gold nanoparticles to target DNA and a new absorption band at wavelengths >600 nm was observed. However, no differences were observed in the absorption spectra of the gold nanoparticles at low concentrations of target DNA (10 pM to 10 nM) due to insufficient aggregation. AFM was used as a biosensing tool over this range of target DNA concentrations in order to monitor the aggregation of gold nanoparticles and to quantify the concentration of target DNA. Based on the AFM images, we successfully evaluated particle number and size at low concentrations of target DNA. The calibration curve obtained when mean particle aggregate diameter was plotted against concentration of target DNA showed good linearity over the range 10 pM to 10 nM, the working range for quantitative target DNA analysis. This AFM-based DNA detection technique was three orders of magnitude more sensitive than a DNA detection method based on UV-vis spectroscopy.  相似文献   

14.
The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10−8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.  相似文献   

15.
A polymerase chain reaction and capillary gel electrophoresis (PCR-CGE) method with ultraviolet (UV) or laser induced fluorescence detection (LIF) was established for the detection of chicken or turkey in heat-treated pork meat mixtures. Mitochondrial DNA samples extracted from heat treated meat were amplified with their corresponding specific primers yielding PCR products between 200 and 300 bp. LIF detection was superior than UV detection in terms of precision and sensitivity for the study of DNA fragments. The CGE-LIF method was highly reproducible and accurate for determining DNA fragment size. The PCR-CGE-LIF was sensitive since a significant fluorescent signal was obtained at the minimum admixture level employed of 1% in meat mixtures. Thus, the PCR-CGE-LIF method established was useful for the detection of chicken or turkey in heat treated meat mixtures and may prove to be useful for the detection of poultry meat in pork processed products.  相似文献   

16.
Highly selective and sensitive assays are required for detection and quantitation of the small masses of DNA typically encountered in clinical and forensic settings. High detection sensitivity is achieved using fluorescent labeling dyes and detection techniques such as spectrofluorometers, microplate readers and cytometers. This work describes the use of a laser-induced fluorescence (LIF) detector in conjunction with a commercial capillary electrophoresis instrument for DNA quantitation. PicoGreen and YO-PRO-1, two fluorescent DNA labeling dyes, were used to assess the potential of the system for routine DNA analysis. Linearity, reproducibility, sensitivity, limits of detection and quantitation, and sample stability were examined for the two assays. The LIF detector response was found to be linear (R2 > 0.999) and reproducible (RSD < 9%) in both cases. The PicoGreen assay displayed lower limits of detection and quantitation (20 pg and 60 pg, respectively) than the YO-PRO-1 assay (60 pg and 260 pg, respectively). Although a small variation in fluorescence was observed for the DNA/dye complexes over time, quantitation was not significantly affected and the solutions were found to be relatively stable for 80 min. The advantages of the technique include a 4- to 40-fold reduction in the volume of sample required compared to traditional assays, a 2- to 20-fold reduction in the volume of reagents consumed, fast and automated analysis, and low cost (no specific instrumentation required).  相似文献   

17.
In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1–500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection.  相似文献   

18.
The microfluidic integration of an entire DNA analysis workflow on a fully integrated miniaturized instrument is reported using lab‐on‐a‐chip automation to perform DNA fingerprinting compatible with CODIS standard relevant to the forensic community. The instrument aims to improve the cost, duration, and ease of use to perform a “sample‐to‐profile” analysis with no need for human intervention. The present publication describes the operation of the three major components of the system: the electronic control components, the microfluidic cartridge and CE microchip, and the optical excitation/detection module. Experimental details are given to characterize the level of performance, stability, reliability, accuracy, and sensitivity of the prototype system. A typical temperature profile from a PCR amplification process and an electropherogram of a commercial size standard (GeneScan 500?, Applied Biosystems) separation are shown to assess the relevance of the instrument to forensic applications. Finally, we present a profile from an automated integrated run where lysed cells from a buccal swab were introduced in the system and no further human intervention was required to complete the analysis.  相似文献   

19.
On-chip electrophoresis can provide size separations of nucleic acids and proteins similar to more traditional slab gel electrophoresis. Lab-on-a-chip (LoaC) systems utilize on-chip electrophoresis in conjunction with sizing calibration, sensitive detection schemes, and sophisticated data analysis to achieve rapid analysis times (<120 s). This work describes the utility of LoaC systems to enable and augment systems biology investigations. RNA quality, as assessed by an RNA integrity number score, is compared to existing quality control (QC) measurements. High-throughput DNA analysis of multiplex PCR samples is used to stratify gene sets for disease discovery. Finally, the applicability of a high-throughput LoaC system for assessing protein purification is demonstrated. The improvements in workflow processes, speed of analysis, data accuracy and reproducibility, and automated data analysis are illustrated.  相似文献   

20.
Zhang Y  Wang Z  Jiang W 《The Analyst》2011,136(4):702-707
In this study, we reported a sensitive fluorescent biosensor for detection of DNA hybridization based on Fe/Au core/shell (Fe@Au) nanoparticles (NPs). First, Fe@Au NPs were synthesized using a reverse micelle method, with gold as the shell and iron as the core. The nanoparticle size was confirmed by transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was performed in order to elucidate the morphology of the Fe@Au NPs. Then probe DNA with -SH at the 5'-phosphate end was covalently immobilized onto the surface of the Fe@Au NPs. The DNA hybridization event can be detected by a fluorescent method and methylene blue (MB) as the fluorescent probe. The decline of the fluorescence intensity of MB (ΔF) was linear with the concentration of the complementary DNA from 3.0 × 10(-13) to 1.0 × 10(-9) M with a detection limit of 1.0 × 10(-13) M (S/N = 3). In addition, this approach of DNA detection exhibited excellent selectivity, even for single-mismatched DNA detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号