首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The photodegradation behaviour of ethylene-vinyl acetate copolymer (EVA)/low density polyethylene (LDPE) composite containing four different types of titanium dioxide (TiO2) was investigated through colour difference, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and mechanical tests. The results showed that the performance losses of composites were qualitatively correlated with the degradation degree. The vinyl acetate (VA) groups in EVA were sensitive to UV light and the photodegradation mainly occurred in the amorphous region. The chain scission and annealing effect facilitated the secondary crystallization of composites. The heterogeneous nucleation effect of TiO2 on the crystallization of composites was related to the particle size of TiO2. The micro rutile TiO2, micro anatase TiO2 and their mixture (rutile/anatase = 13/87) exhibited a photo-stabilising effect, while the nano mixed crystals TiO2 (rutile/anatase = 20/80) had an opposite effect.  相似文献   

2.
Adsorbed poly(ethylene‐stat‐vinyl acetate) (PEVAc) on fumed silica was studied using temperature‐modulated differential scanning calorimetry (TMDSC) and FT‐IR spectroscopy. The properties of the copolymers were compared with poly(vinyl acetate) (PVAc) and low density polyethylene (LDPE) as references. TMDSC analysis of the copolymer‐silica samples in the glass transition region was complicated for the copolymers because of the ethylene crystallinity. Nevertheless, examination of the glass transition region for small adsorbed amounts of these copolymers indicated the presence of tightly‐ and loosely‐bound polymer segments, similar to other polymers which have an attraction to silica. Compared with bulk polymers with the same composition, the tightly‐bound polymers showed an increased glass transition temperature (Tg) and a loosely‐bound fraction with a lower Tg than bulk. FT‐IR spectra of the surface copolymers indicated that the fraction of bound carbonyls (p) increased as the fraction of vinyl acetate in the copolymers decreased, consistent with the notion that the carbonyls from vinyl acetate preferentially find their way to the silica surface. Spectra from samples with different adsorbed amounts of polymer were used to obtain the amount of bound polymer (Mb) and the ratio of molar absorption coefficients of bound carbonyls to free carbonyls (X). The copolymers had very large p values (up to 0.8) at small adsorbed amounts and dependent on the composition of the polymer. However, an analysis of the bound fractions, based on only the vinyl acetate groups, superimposed the data, suggesting that the ethylene units simply dilute the vinyl acetate groups in the surface polymer. The sample with the smallest fraction of vinyl acetate did not show this behavior and may be considered to be “carbonyl poor.” © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 727–736  相似文献   

3.
Molecular orientation of ethylene–vinyl acetate (EVA) copolymer nanofilms adsorbed on chemically controlled surfaces is studied. Four EVA copolymers with different contents of vinyl acetate (VA) were spin‐coated onto gold, COOH and NH2 functionalized substrates in order to study chain behaviour when adsorbed in a quasi‐two‐dimensional system. Polarization‐modulation infrared reflection–absorption spectroscopy (PM‐IRRAS), a very suitable technique to study thin films, was the key to quantitative calculation of EVA chain orientational angles. Acid–base interactions between carbonyl groups of the chain ramification (vinyl acetate units) and the surface functionalities are evidenced on the basis of infrared spectra. Their incidence on the molecular orientation is also discussed. Our results show a quasi‐parallel orientation of EVA main chains with respect to the surface plane for all adsorption substrates. At the same time, orientation changes of the acetate groups are observed when the EVA copolymer is adsorbed onto functionalized substrates, suggesting that acid–base interactions could influence the orientation of these groups. However, these changes are limited and cannot reorient the main chain axis. Moreover, our results show that increasing VA content in the chain does not lead to more carbonyl functions involved in acid–base interactions with the adsorption surface. This fact also will be discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Specific interactions in binary blends of ethylene/vinyl acetate copolymer (EVA) with various low molecular weight terpene-phenol tackifying resins (TPR) were systematically investigated, as a function of the composition of the blend and of the electron-acceptor ability of the resin, by using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Molecular acid-base were evidenced between TPR hydroxyl groups and EVA carbonyl groups. Quantitative information on the fraction of acid-base bonded entities, the enthalpy and the equilibrium constant of pair formation were obtained. A crystalline transition of the EVA copolymer is observed and is discussed in terms of enthalpy and entropy considerations based on FTIR and calorimetric differential scanning calorimetry (DSC) investigations. Fundamental results are then summarized in order to predict the interfacial reactivity of such polymer blends towards acid or basic substrates.  相似文献   

5.
The synthesis of a series of novel cyano-containing copolymers is described. Alternating copolymers of acrylonitrile with vinyl esters are obtained by increasing the electrophilic character of the nitrile monomers by complexation with zinc chloride. Copolymers of methyl and ethyl α-cyanoacrylates with vinyl esters are prepared using radical initiators in the presence of 7% acetic acid as inhibitor for anionic polymerization. The copolymers of methyl α-cyanoacrylate with the vinyl esters have Tg's above 140°C. Methyl vinylidene cyanide (MVCN) copolymerizes spontaneously with para-substituted styrenes to yield copolymers with high inherent viscosities and high Tg (160°C) and the copolymer of MVCN with vinyl acetate is also synthesized. The pyroelectric constants p for these polymers were measured and the values of p for the copolymers of vinyl acetate with methyl β,β-dicyanoacrylate, methyl α-cyanoacrylate, or MVCN were in the same range as the well-studied vinylidene cyanide/vinyl acetate copolymer. A higher concentration of dipoles generally results in higher Tg's and higher pyroelectric coefficients. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
The effect of vinyl acetate (VA) content in ethylene vinyl acetate (EVA) copolyrner on the mechanical properties of polypropylene was investigated. Three different EVA copolymers with concentrations of 3 wt%, 6 wt%, 9 wt%, 12 wt% and 15 wt%, were blended to polypropylene. The mechanical properties such as yield and tensile strengths, elastic modulus, Izod impact strength, hardness and melt flow index of the blends were investigated. Relationship between type of vinyl acetate and concentrations, mechanical, MFI and morphological properties were explored.  相似文献   

7.
Measurements of the complex permittivity were used to study miscibility and phase behavior in blends of poly(vinyl chloride) (PVC) with two random ethylene—vinyl acetate (EVA) copolymers containing 45 and 70 wt % of vinyl acetate. The dielectric β relaxation of the pure polymers and blends was followed as a function of temperature and frequency for different blend compositions and thermal treatments. Blends of EVA 70/PVC were found to be miscible for compositions of about 25% EVA 70 and higher. Blends of lower EVA 70 content showed evidence of two-phase behavior. EVA 45/PVC blends were found to be miscible only at the composition extremes; at intermediate compositions these blends were two-phase, partially miscible. Both blend systems showed lower critical solution temperature behavior. Phase separation studies revealed that in the EVA 45/PVC blends, PVC was capable of diffusing into the higher Tg phase at temperatures below the Tg of the upper phase. In the blends, ion transport losses were significant above the loss peak temperatures, and in the two-phase systems, often obscured the upper temperature loss process. It was shown possible, however, to correct the loss curves for this transport contribution.  相似文献   

8.
Vinyl alcohol–ethylene (VAE) copolymers, commercially manufactured by hydrolysis of the corresponding vinyl acetate–ethylene copolymers, can contain small amounts of unhydrolyzed vinyl acetate. This article shows the influence of these residual groups on the structure of the resulting copolymers, studied by nuclear magnetic resonance and wide‐angle X‐ray scattering. Thermal and mechanical properties of these materials were investigated by differential scanning calorimetry, thermogravimetry, drawing behavior, birefringence measurements, and dynamic mechanical analysis. The structure of the copolymers is considerably affected by the volume of the residual acetate groups, bigger than that of the hydroxyl ones, which hinders the crystallization process. In relation to the thermal and mechanical properties, the temperature and enthalpy of melting as well as the Young's modulus and yield stress, decrease as vinyl acetate molar fraction increases. Moreover, the α and β relaxations are shifted to lower temperatures as residual content in the copolymer is raised. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 573–583, 2000  相似文献   

9.
Blends of two or more ethylene–styrene (ES) copolymers that differed primarily in the comonomer composition of the copolymers were studied. Available thermodynamic models for copolymer–copolymer blends were utilized to determine the criteria for miscibility between two ES copolymers differing in styrene content and also between ES copolymers and the respective homopolymers, polystyrene and linear polyethylene. Model estimations were compared with experimental observations based primarily on melt‐blended ES/ES systems, particularly via the analysis of the glass‐transition (Tg ) behavior from differential scanning calorimetry (DSC) and solid‐state dynamic mechanical spectroscopy. The critical comonomer difference in the styrene content at which phase separation occurred was estimated to be about 10 wt % for ES copolymers with a molecular weight of about 105 and was in general agreement with the experimental observations. The range of ES copolymers that could be produced by the variation of the comonomer content allowed the study of blends with amorphous and semicrystalline components. Crystallinity differences for the blends, as determined by DSC, appeared to be related to the overlapping of the Tg of the amorphous component with the melting range of the semicrystalline component and/or the reduction in the mobility of the amorphous phase due to the presence of the higher Tg of the amorphous blend component. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2976–2987, 2000  相似文献   

10.
Copolymer characterization is accomplished with respect to measurement of thermal diffusion coefficient (DT) and molecular weight determination by thermal field-flow fractionation. The examined copolymers are the eight poly(ethylene-co-vinyl acetate)s [P(E-V)] having different compositions of vinyl acetate ranging from 25 to 70% and the molecular weight from 110,000 to 285,000, and three polyvinyl acetate standards as component homopolymer. The carrier solvents are tetrahydrofuran, toluene, and chlorobenzene which have different viscosities and thermal conductivities. Measured DT values vary from 1.36 × 10?8 to 5.97 × 10?8 cm2/(s . K) which are dependent on the composition of copolymers and types of carriers. These values increase linearly with the increase of weight percent of vinyl acetate. It is possible to estimate DT values of polyethylene from the extrapolated intercept in the plots of DT vs. vinyl acetate wt % of copolymer. Tetrahydrofuran is found to be the appropriate carrier solvent for the separation of P(E-V) copolymers since DT varies greatly with the increase of wt % in THF. Attempts are made to correlate the measured retention data with molecular sizes of copolymers for the construction of the molecular weight calibration curve. Good correlations (r2 ≥ 0.931) are found in which D/DT values of polymers vary inversely with the product of hydrodynamic volume by weight ratio of vinyl acetate. Based on this relationship, the unknown molecular weight of copolymer sample can be determined from component homopolymers for which standards are readily available. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The steady-state fluorescence of pyrene and anthracene are used to investigate the relaxation processes of several random ethylene-co-vinyl acetate copolymers, EVA, with defined comonomer compositions (EVA-9, EVA-18, EVA-25, EVA-33 and EVA-40). The temperature of the relaxation processes are compared with those of low-density polyethylene (LDPE) and poly(vinyl acetate) (PVAc). The polymer relaxation processes are assigned to Tg=300-310 K (glass transition temperature of the PVAc); Tα=270-300 K (relaxation processes of the ethylene units present in LDPE and EVA); Tg=220-250 K (glass transition of the LDPE and of the EVA); Tγ or Tβ=160-190 K (relaxation processes of interfacial defects of methylenic chains of LDPE and rotation of the acetate group of the PVAc and the EVA); and Tγ=90-130 K (relaxation processes of small sequences of methylene units of LDPE and end groups of PVAc). An Arrhenius-type function was employed as an attempt to represent the experimental data of fluorescence intensity versus temperature above the γ-relaxation temperature. As obtained with other techniques, there is not a simple relationship between the polymer relaxation processes and the vinyl acetate content that can be explained by the morphology in these copolymers.  相似文献   

12.
The mild UV aging of ethylene-vinyl acetate copolymer (EVA) with two vinyl acetate (VAc) contents (14, 18 wt%) was performed in a xenon arc source chamber. The degradation mechanism was analyzed via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), gel content and high temperature gel permeation chromatography (HTGPC). Photo-chemically induced deterioration was first initiated from vulnerable VAc units. Ketone formation preceded lactone generation, especially in EVA with high VAc content. Un-stable structures induced further degradation in the main chain. Competition between radiation induced cross-linking and chain scission in EVA was observed, and the later was confirmed to be dominant. Higher VAc content resulted in remarkable drop in molecular weight and growth in polydispersity. Apparent re-arrangement in crystallisation and consequent decrease in thermal stability are discussed through differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA), which accorded well with the chain scission tendency. Interaction between photo-chemical degradation and physical annealing accounted for the first increasing then decreasing tendency in the mechanical properties of both EVAs.  相似文献   

13.
Graft copolymers of poly(vinyl chloride) with styrene and (meth)acrylates were prepared by atom transfer radical polymerization. Poly(vinyl chloride) containing small amount of pendent chloroacetate units was used as a macroinitiator. The formation of the graft copolymer was confirmed with size exclusion chromatography (SEC), 1H NMR and IR spectroscopy. The graft copolymers with increasing incorporation of butyl acrylate result in an increase of molecular weight. One glass transition temperature (Tg) was observed for all copolymers. Tg of the copolymer with butyl acrylate decreases with increasing content of butyl acrylate.  相似文献   

14.
The relationship between transition temperatures and copolymer composition was studied by DSC. Three types of copolymers were studied: styrene-acrylonitrile (SAN), vinyl chloride-vinyl acetate (VC-VA), and ethylene vinyl acetate (EVA). SAN's and VC-VA's are amorphous copolymers, whereas EVA's are semi-crystalline copolymers. The variation of the glass transitions and the crystalline melting are discussed in this study.  相似文献   

15.
A surface treatment with corona discharge was used to improve the adhesion properties of ethylene vinyl acetate copolymer (EVA) containing small amounts of four CaCO3 with different particle size. The nature of the surface modifications produced by the corona discharge treatment and the adhesion to a polychloroprene adhesive were assessed. Treatment of CaCO3 filled EVA with corona discharge produced a decrease in water contact angle value, irrelevant to the different particle size of the calcium carbonates. The corona discharge treatment created C-O and C=O moieties on the EVA surface and also increased the peel strength, more markedly as the CaCO3 particle size increased. In general, a mixed (adhesion + cohesive in the EVA) failure in the filled EVA material was produced (assessed by IR-ATR spectroscopy and SEM micrographs of the failed surfaces), but the failure was more cohesive in the EVA containing higher particle size CaCO3. The durability of the joints was also studied.  相似文献   

16.
The cellulose acetate-grafted-poly(glycidyl methacrylate) copolymers were synthesized successfully by free radical polymerization. The resulting copolymer was characterized by proton nuclear magnetic resonance (1H-NMR), solid-state 13C-NMR, Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The crystallization behavior, thermal properties, specific particle surface area, moisture sorption behavior of the modified cellulose acetate were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) method and Dynamic Vapor Sorption (DVS) instrument. It was found that the poly(glycidyl methacrylate) (PGMA) grafting was effective in improving the water adsorption of cellulose acetate (CA) changing the specific surface area, and reducing the Tg of copolymers.  相似文献   

17.
18.
Mechanical and flame retardant properties of ethylene vinyl acetate (EVA) copolymer/organoclay/alumina trihydrate (ATH) nanocomposites have been studied. ATH with different particle sizes, ATH1 (2.2-5.2 μm) and ATH2 (1.5-3.5 μm), and three different surface treatments, uncoated, fatty acid coated and silane coated, have been used. A synergistic effect was observed in EVA/organoclay/ATH nanocomposites with the total heat evolved (THE) and the heat release rate (HRR) lower than that of EVA/ATH composite. It was also found that mechanical and flame retardant properties are affected in different ways by the particle size and the surface treatment of ATH fillers. Improvements in tensile and flame retardant properties were observed in nanocomposites when uncoated ATH fillers and fatty acid coated ATH2 filler were used. On the other hand, silane coating on ATH1 and ATH2 improves limiting oxygen index (LOI) and leads to higher tignition and the best char stability after cone calorimeter test.  相似文献   

19.
Diglycidyl ether of bisfenol-A (DGEBA)/poly(vinyl acetate) (PVAc)/poly(4-vinyl phenol) brominated (PVPhBr) ternary blends cured with 4,4’-diaminodiphenylmethane (DDM) were investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). Homogeneous (DGEBA+DDM)/PVPhBr networks with a unique T g are generated. Ternary blends (DGEBA+DDM)/PVAc/PVPhBr are initially miscible and phase separate upon curing arising two T gs that correspond to a PVAc-rich phase and to epoxy network phase. Increasing the PVPhBr content the T gof the PVAc phase move to higher temperatures as a consequence of the PVAc-PVPhBr interactions. Different morphologies are generated as a function of the blend composition.  相似文献   

20.
A new copolymer was synthesized by free radical polymerization in solution from methyl 3α-methylacryloyl-7α, 12α-dihydroxy-5β-cholan-24-oate (MACAME) and maleic anhydride (MAN). The copolymer was characterized by FT-IR and functional group analysis. The reactivity ratios of the two monomers were estimated [r_1 = 11.6 (MACAME), r_2 = 0.01(MAN)] by conducting a series of copolymerizations with a variety of monomer feed compositions and analyzing thecopolymer composition. Thermogravimetric and differential scanning calorimetric analyses of the samples indicate that thecopolymer possesses good thermal stability. The temperature at which the copolymer samples experienced a 10% weight loss(T_(WL)) is over 287℃, and the T_g ranged from 174 to 185℃ for the copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号