首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glasses having compositions xLi2O∙(85 − x)Bi2O3∙15SiO2 (x = 35, 40, and 45 mol%) were prepared by normal melt quenching technique. Electrical relaxation and conductivity in these glasses were studied using impedance spectroscopy in the frequency range from 20 Hz to 1 MHz and in the temperature range from 453 to 603 K. The ac and dc conductivities, activation energy of the dc conductivity and relaxation frequency were extracted from the impedance spectra. The dc conductivity increases with increase in Li2O content providing modified glass structure and large number of mobile lithium ions. Similar values of activation energy for dc conduction and for conductivity relaxation time indicate that the ions overcome the same energy barrier while conducting and relaxing. The non-exponential character of relaxation processes increases with decrease in stretched exponential parameter ‘β’ as the composition parameter ‘x’ increases. The observed conductivity spectra follow a power law with exponent ‘s’ which increases regularly with frequency and approaches unity at higher frequencies. Nearly constant losses (NCL) characterize this linearly dependent region of the conductivity spectra. A deviation from the ‘master curve’ for various isotherms of conductivity spectra was also observed in the high-frequency region and at low temperatures, which supports the existence of different dynamic processes like NCL in addition to the ion hopping processes in the investigated glass system.  相似文献   

2.
We have investigated the electric-field effects on the cw and time-resolved photoluminescence (PL) properties in a marginal type-I GaAs/AlAs superlattice (SL) whose lowest X state (X1) is situated in the lowest Γ(Γ1) miniband. In the low bias voltage regime, the PL spectra reveal the transition between type-I and type-II radiative recombination processes caused by Wannier–Stark localization. In contrast, in the high bias voltage regime, the decay time of the time-resolved PL is prolonged. This is because of delayed carrier transport caused by Γ–X transfer. From these results, it was found that marginal type-I SLs present various interesting phenomena that originate from the competitive carrier transport among the Γ miniband, the localized Γ Stark–ladder states, and the X1 state.  相似文献   

3.
The kinetics of indirect photoluminescence of GaAs/AlxGa1−x As double quantum wells, characterized by a random potential with a large amplitude (the linewidth of the indirect photoluminescence is comparable to the binding energy of an indirect exciton) in magnetic fields B≤12 T at low temperatures T≥1.3 K is investigated. It is found that the indirect-recombination time increases with the magnetic field and decreases with increasing temperature. It is shown that the kinetics of indirect photoluminescence corresponds to single-exciton recombination in the presence of a random potential in the plane of the double quantum wells. The variation of the nonradiative recombination time is discussed in terms of the variation of the transport of indirect excitons to nonradiative recombination centers, and the variation of the radiative recombination time is discussed in terms of the variation of the population of optically active excitonic states and the localization radius of indirect excitons. The photoluminescence kinetics of indirect excitons, which is observed in the studied GaAs/AlxGa1−x As double quantum wells for which the random potential has a large amplitude, is qualitatively different from the photoluminescence kinetics of indirect excitons in AlAs/GaAs wells and GaAs/AlxGa1−x As double quantum wells with a random potential having a small amplitude. The temporal evolution of the photoluminescence spectra in the direct and indirect regimes is studied. It is shown that the evolution of the photoluminescence spectra corresponds to excitonic recombination in a random potential. Zh. éksp. Teor. Fiz. 115, 1890–1905 (May 1999)  相似文献   

4.
Carrier dynamics in aligned InAs/GaAs quantum dots (QDs) grown on cross-hatched patterns induced by metastable InxGa1−xAs layers have been studied by time-resolved photoluminescence. The low-temperature carrier lifetimes were found to be of the order of 100–200 ps and determined by carrier trapping and nonradiative recombination. Comparisons with control “nonaligned” InAs QDs show remarkable differences in dependence of peak PL intensities on excitation power, and in PL decay times dependences on both temperature and excitation intensities. Possible origin of traps, which determine the carrier lifetimes, is discussed.  相似文献   

5.
The interplay of polarization fields and free carrier screening in InxGa1−xN/GaN (0.03<x<0.07) multiple quantum wells is studied by combining photoluminescence (time-integrated and time-resolved) and cathodoluminescence studies, in an excitation density range from 108 to 1012 cm−2 of generated e–h pairs. For such low In content, the quantum-confined Stark effect is verified to rule the recombination dynamics, while effects of carrier localization in potential fluctuations have a minor role. Efficient field screening is demonstrated in CL steady-state high-injection conditions and in PL time-resolved experiments at the maximum excitation density. Under recovered nearly flat band conditions, quantum confinement effects are revealed and a high and possibly composition-dependent bowing parameter is extrapolated. Information on radiative and non-radiative rates for carrier recombination in the wells is obtained, both from steady-state and from time-resolved experiments, modelling the carrier dynamics in the framework of a theoretical rate equation model, which calculates electronic states and recombination rates in the nanostructure by coupling complete self-consistent solutions of Schrödinger and Poisson equations.  相似文献   

6.
High-pressure photoluminescence (PL) experiments (at 9 K) are reported for GaAs1−xNx/GaAs quantum wells having N compositions (x=0.0025, 0.004) in the dilute regime where the GaAs1−xNx alloy conduction band (CB) evolves rapidly by incorporation of N-pair states. Under increasing pressure, the PL spectra exhibit several new N-pair features that derive from CB-resonant states at 1 atm. Two of these features appear strongly at sub-band-gap energies for P29 kbar in the x=0.0025 sample, but are absent for all pressures in the x=0.004 sample. Several competing PL assignments due to bound-exciton recombination at NNi pairs (i=1–4 is the anion separation) are considered in light of prior findings for N-doped (1017 cm−3) GaAs. The absence of certain PL features in the x=0.004 sample shows that N-pair states mix into the CB-continuum via a selective process, and this selectivity offers an important test for band-structure calculations in dilute GaAs1−xNx alloys.  相似文献   

7.
We have investigated the interband and the intraband absorption properties of Ge/Si self-assembled islands. The investigated structure consists of a p–i–n junction containing Ge/Si self-assembled islands embedded in a Si0.98Ge0.02 waveguiding layer. The variation of transmission associated with carrier injection under forward bias is monitored both in the near-infrared and in the mid-infrared spectral ranges. We show that the carrier injection leads to an absorption resonant at 185 meV which is polarized along the growth axis of the islands. This transition corresponds to an intraband optical transition from the island ground states to the two-dimensional wetting layer states. This assignment is supported by a two-dimensional band structure calculation performed in a 14 band k·p formalism. Meanwhile, the carrier injection leads to a bleaching of the interband absorption. We show that this electroabsorption spectroscopy is a useful tool for the study of self-assembled islands that is complementary of standard photoluminescence, electroluminescence or absorption spectroscopies.  相似文献   

8.
CdxZn(1−x)S (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) thin films were deposited by the chemical spray pyrolysis technique using a less used combination of chemicals. Depositions were done at 573 K on cleaned glass substrates. The composition, surface morphology and structural properties of deposited films were studied using EDAX, SEM and X-ray diffraction technique. XRD studies reveal that all the films are crystalline with hexagonal (wurtzite) structure and inclusion of Cd into the structure of ZnS improved the crystallinity of the films. The value of lattice constant ‘a’ and ‘c’ have been observed to vary with composition from 0.382 to 0.415 nm and 0.625 to 0.675 nm, respectively. The band gap of the thin films varied from 3.32 to 2.41 eV as composition varied from x = 0.0–1.0. It was observed that presence of small amount of cadmium results in marked changes in the optical band gap of ZnS.  相似文献   

9.
We present results of wavelength-dependent ultra-fast pump–probe experiments on micelle-suspended single-walled carbon nanotubes. The linear absorption and photoluminescence spectra of the samples show a number of chirality-dependent peaks and, consequently, the pump–probe results sensitively depend on the wavelength. In the wavelength range corresponding to the second van Hove singularities (VHSs) we observe subpicosecond decays, as has been seen in previous pump–probe studies. We ascribe these ultra-fast decays to intraband carrier relaxation. On the other hand, in the wavelength range corresponding to the first VHSs, we observe two distinct regimes in ultra-fast carrier relaxation: fast (0.3–1.2 ps) and slow (5–20 ps). The slow component, which has not been observed previously, is resonantly enhanced whenever the pump photon energy resonates with an interband absorption peak, and we attribute it to interband carrier recombination. Finally, the slow component is dependent on the pH of the solution, which suggests an important role played by H+ ions surrounding the nanotubes. PACS 78.47.+p; 78.67.Ch; 73.22.-f  相似文献   

10.
This study follows up our previous investigation of the valence band (VB) intersubband emission from quantum cascade structures grown lattice matched on Si substrates. Here, Si/Si1−xGex (x=80%) heterostructures are investigated which are deposited by MBE on a virtual substrate of relaxed SiGe containing 50% of Ge. TEM analysis reveal flat and abrupt interfaces for structures grown at temperatures Tgrowth≈300°C. Intersubband absorption and photoluminescence emission manifest well-defined interfaces and good material quality. The observed intersubband line positions are found to be in good agreement with k·p model calculations for the VB. This is in contrast to the observed type II no phonons recombination which is found at consistently lower energy than expected. Finally, electrically excited intersubband emission from a strain compensated cascade structure containing three periods is presented.  相似文献   

11.
Photoluminescence and luminescence excitation spectra have been performed on epitaxial layers of nitrogen doped GaPxAs1?x alloys (x > 0.85). The main luminescence excitation band A appears above the photoluminescence band Nx. The composition dependence of this energy shift suggests an alloying energy shift. The origin of this new effect would be the thermalization of the bound exciton population to the lower energy states of the A absorption band which reflects the density of states broadening due to As-P disorder around N atoms  相似文献   

12.
With the aim of establishing the mechanisms for spontaneous recombination and lasing, we have studied InGaN/GaN multiple quantum well heterostructures emitting in the 450 nm region and grown by organometallic vapor-phase epitaxy on silicon substrates using several mechanical stress-reducing AlN/AlGaN inserts. Photoluminescence (PL) excitation spectroscopy, the non-monoexponential nonequilibrium carrier relaxation kinetics, and x-ray diffractometry data indicate significant inhomogeneity of the InGaN solid solution in quantum wells of these structures. The dependences of the position of the photoluminescence spectra on the excitation level and the temperature, the large shift in the photoluminescence, gain, and lasing spectra relative to the absorption edge allow us draw the conclusion that the dominant contribution to spontaneous and stimulated recombination comes from nonequilibrium charge carriers localized in indium-rich InGaN clusters. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 1, pp. 94–101, January–February, 2008.  相似文献   

13.
The diffractive production of high-p jets in deep-inelastic scattering is studied in the semiclassical approach. The p-spectra of and diffractive final states are found to be qualitatively different. For fina states, which are produced by ‘hard’ colour-singlet exchange, the p-spectrum is much softer than for final states, where the colour neutralization is ‘soft’. Furthermore, the two different final states can be clearly distinguished by their diffractive mass distributions.  相似文献   

14.
The reflectance spectra of polycrystalline La2–x Sr x CuO4 samples were investigated in the energy range between 50 meV and 4 eV in dependence of the Sr content. The spectra are attributed to free carrier absorption of the Drude type, superimposed by optical phonon excitations below 0.1 eV and intrinsic absorption above 1 eV. From the influence of Sr doping onto the plasma energy it is deduced that La2–x Sr x CuO4 is ap-type conductor with a maximum carrier concentration of 2.0×1021 cm–3 forx=0.15. The results are interpreted in terms of a Hubbard model with an empty upper and ap-doped lower Hubbard band with a width of 1.9 eV.  相似文献   

15.
The influence of the Mg concentration and lattice temperature on the carrier recombination dynamics in Zn1−xMgxO alloys has been studied by time-resolved photoluminescence for different emission and excitation energies. Carrier localization effects are found to play a significant role, becoming increasingly important for lower temperatures and higher Mg concentrations. Emission energy dependent dynamics were analyzed by the application of the theoretical model, yielding a characteristic localization energy of 60±15 meV for the sample with the highest Mg concentration of x=0.21.  相似文献   

16.
We report on a field-dependent photoluminescence (PL) emission rate for the transitions between band states in modulation-doped CdTe/Cd1−xMgxTe single quantum wells in the integer quantum Hall region. The recombination time observed for the magneto-PL spectra varies in concomitance with the integer quantum Hall plateaus. Furthermore, different PL decay times were observed for the two circular polarizations, i.e. for the transitions between the Zeeman split subbands of the Landau levels. We analyzed the data in comparison with the experimentally determined spin polarization of the conduction electrons and the Zeeman splitting of the valence band. Furthermore, we discuss the relevance of the spin polarization of the conduction electrons, the electron–hole exchange interaction and the spin-flip processes of the hole states for the PL decay time.  相似文献   

17.
Optical band gap of amorphous, crystallized, laser induced amorphous and laser induced crystallized films of Se75S25−xAgx (x=4, 6 and 8) glassy alloys was studied from absorption spectra. The amorphous and crystallized films were induced by pulse laser for 10 min. After laser irradiation on amorphous and crystalline films, optical band gap was measured. It has been found that the mechanism of the optical absorption follows the rule of indirect transition. The amorphous thin films show an increase in the optical band gap, while the crystallized (thermally annealed) thin films show a decrease in the optical band gap by inducing laser irradiation. Crystallization and amorphization of chalcogenide films were accompanied with the change in the optical band gap. The change in optical energy gap could be determined by identification of the transformed phase. These results are interpreted in terms of concentration of localized states due to shift in Fermi level.  相似文献   

18.
The photoluminescence, photoconductivity and absorption in GaSe0.9Te0.1 alloy crystals have been investigated as a function of temperature and external electric field. It has been observed that the exciton peaks shift to lower energy in GaSe0.9Te0.1 alloy crystals compared to GaSe crystals. The long wavelength tails of interband photoluminescence, photoconductivity and absorption spectra are determined by the free exciton states and show an Urbach-Martienssen-type dependence to the photon energy. The maxima of the extrinsic photoluminescence and photoconductivity spectra were found to be determined by the acceptor centers with an energy of EA=EV+0.19 eV formed by the polytypism and defects complexes that include Se and Te anions.  相似文献   

19.
Zn1−xGdxS (x = 0.00, 0.02 and 0.04) nanoparticles were synthesized by facile chemical co-precipitation method using PVP as a surfactant. ZnS nanoparticles could be doped with Gd ions during synthesis without altering the XRD patterns of ZnS. Also, the pattern of the powders showed cubic zincblende structure. The particle size obtained from the XRD studies lies in the range 3-5 nm, whereas from TEM analysis it is 4 nm for x = 0.02 sample. The UV-Vis absorption spectra revealed that Zn1−xGdxS nanoparticles exhibit strong confinement effect as the blue shift in the absorption spectra with that of the undoped ZnS. The photoluminescence spectra showed enhanced luminescence intensity and the entry of Gd into host lattice.  相似文献   

20.
Nominally undoped AlxGa1–xAs grown by molecular beam epitaxy from As4 species at elevated substrate temperatures of 670°C exhibits well-resolved excitonic fine structure in the low-temperature photoluminescence spectra, if the effective As-to-(Al+Ga) flux ratio on the growth surface is kept within a rather narrow range of clearly As-stabilized conditions. In contrast to previous results on AlxGa1–xAs of composition 0.15not to shift in energy by changing the excitation intensity. This implies a simple freeelectron carbon-acceptor recombination mechanism for the line without any participation of a donor. In AlxGa1–xAs of composition close to the direct-to-indirect cross-over point, two distinct LO-phonons separated by 34 and 48 meV from the (D 0,C 0) peak position at x=0.43 were observed which were before only detectable by Raman scattering experiments. The intensity of the carbon-impurity related luminescence lines in bulk-type AlxGa1–xAs and GaAs layers was found to be strongly reduced, as compared to the excitonic recombination lines, if the respective active layer was covered by a very thin confinement layer of either GaAs on top of AlxGa1–xAs or vice versa grown in the same growth cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号