首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new analytical method is presented for the compound-specific carbon and nitrogen isotope ratio analysis of a thermo-labile nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by gas chromatograph coupled to an isotope ratio mass spectrometer (GC-IRMS). Two main approaches were used to minimise thermal decomposition of the compound during gas chromatographic separation: programmed temperature vaporisation (PTV) as an injection technique and a high-temperature ramp rate during the GC run. δ15N and δ13C values of RDX measured by GC-IRMS and elemental analyser (EA)-IRMS were in good agreement within a standard deviation of 0.3‰ and 0.4‰ for nitrogen and carbon, respectively. Application of the method for the isotope analysis of RDX during alkaline hydrolysis at 50°C revealed isotope fractionation factors ε carbon?=??7.8‰ and ε nitrogen?=??5.3‰.  相似文献   

2.
The combination of a programmable temperature vaporisation (PTV) injector with resistive heating GC (RH-GC), a form of fast GC, has been applied to the analysis of organophosphorus (OP) pesticides. The PTV injector was optimised in the 'at-once' solvent vent mode for the injection of ethyl acetate (10-40 microL) or ACN (10 microL). The short RH-GC column (5 m x 0.25 mm ID) with fast temperature ramps (up to 153 degrees C/ min) allowed the separation of a total of 20 OP pesticides in less than 6 min. Average recoveries between 67 and 119% were obtained for pesticides spiked at 0.01 mg/kg into apple and pear matrix. Extraction of orange juice with ACN provided higher recoveries (92-104%) for methamidophos, acephate and omethoate compared to ethyl acetate (62-73%). Results for analysis of OP pesticides in samples containing incurred residues were in good agreement with those obtained using GC-MS. The overall method was rapid, allowing 20 samples to be analysed in 4 h.  相似文献   

3.
The detection of exogenous testosterone in bovine urine was investigated by using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The carbon isotopic ratio measurement of epitestosterone, etiocholanolone (testosterone metabolite) and DHEA (testosterone precursor) in female bovine urines after testosterone enanthate administration was carried out. An important modification in the 13C/12C ratio of testosterone metabolites was observed, such that significant differences between precursor and metabolites of testosterone occurred until three weeks after intramuscular administration of testosterone enanthate. The factors influencing the 13C/12C of endogenous steroids were studied especially through cattle feeding and age. The DHEA mean delta13C value was found to vary between -25 and -26/1000 when hay and concentrate diet were used for fattening. On the other hand the delta13C value observed when maize silage was used increased to -20/1000. Testosterone metabolites showed the same delta13C increase as their precursor. Moreover, we observed a clear relationship between age and efficiency of misuse determination. Indeed, because of the lower concentration of natural hormones in young animals, the contribution of exogenous molecules increases significantly compared with older subjects. Consequently, demonstration of administration is easier to achieve in calves than in mature animals.  相似文献   

4.
A novel system for sample introduction into a Gas Chromatograph (GC) using an automated in-column pyrolysis device has been developed. The in-column pyrolysis device is suitable for use with any GC or GC-MS system. Solid samples are dissolved or emulsions can be diluted and injected into the system. Because the system is designed for introducing liquid samples, a better control of the injected sample amounts is achieved. This leads to high reproducibility of the peak areas, offering new opportunities for quantitation of polymers or other high molecular weight materials. In addition, a better statistical representation of the material to be analyzed is given if the samples are dissolved in a solvent. The system can be operated both in a normal GC injection mode, and in the pyrolysis mode. As a conventional GC injector working in on-column or Programmed Temperature Vaporization (PTV) injection mode, (without the pyrolysis function), information on the volatile fraction of a sample can be obtained. Once the volatile materials in the sample have been separated, a second analysis on the non-volatile matrix can be performed by initiating the pyrolysis sequence, yielding information on the non-volatile fraction of the sample. Both features, on column or PTV injection mode and in-column pyrolysis can be used separately or in combination. This new technology is expected to be useful for the determination of additives, monomers, solvents and other volatile components in a non volatile matrix, such as polymers, as well as in the characterization of the non-volatile matrix itself, in a single run. Revised: 20 June and 21 July 2005  相似文献   

5.
Two methods for determination of cholesterol in fat and muscle of pig were evaluated: extraction with chloroform:methanol (2:1, v/v) followed by saponification (method 1) and direct saponification (method 2). HPLC and GC were used to determine cholesterol concentrations. GC analysis was performed with a capillary column of 100 μm using a PTV injector in the modes of cold split and solvent venting. Cholesterol was analyzed without derivatization. Both methods of extraction did not present significant differences (p > 0.01). Sample analysis by GC with solvent venting injection and HPLC showed the lowest % r.s.d. but GC in the cold split mode allowed to obtain a shorter analysis time. Cholesterol concentrations obtained by HPLC were not statistically different from the results obtained by GC with solvent venting injection and were slightly lower than those previously reported. Cholesterol concentrations in fat and muscle tissues respectively ranged from 52 to 77 mg/100 g and from 55 to 65 mg/100 g.  相似文献   

6.
The development and application of a combined gas chromatography/thermal conversion/isotope ratio mass spectrometry (GC/TC/IRMS) method for D/H ratio determination of endogenous urinary steroids are presented. The key element in sample preparation was the consecutive cleanup with high‐performance liquid chromatography of initially native and subsequently acetylated steroids. This strategy enabled sufficient cleanup off all target analytes for determination of their respective D/H values. Ten steroids (11β‐hydroxyandrosterone, 5α‐androst‐16‐en‐3α‐ol, pregnanediol, androsterone, etiocholanolone, testosterone, epitestosterone, 5α‐androstan‐3α,17β‐diol, 5β‐androstan‐3α,17β‐diol and dehydroepiandrosterone) were measured from a single urine specimen. Depending on the biological background, the determination limit for all steroids ranged from 10 to 15 ng/mL for a 20 mL specimen. The method was validated by application of linear mixing models on each steroid and covered repeatability and reproducibility. The specificity of the procedure was ensured by gas chromatography/mass spectrometry (GC/MS) analysis of the sample using equivalent chromatographic conditions to those employed in the GC/TC/IRMS measurement. Within the sample preparation, no isotopic fractionation was observed, and no amount‐dependent shift of the D/H ratios during the measurement was noticed. Possible memory effects occurring during IRMS measurements were corrected by applying a simple rule of proportion. In order to determine the naturally occurring D/H ratios of all implemented steroids, a population of 18 male subjects was analyzed. Relevant mean Δ values among selected steroids were calculated which allowed us to study the metabolic pathways and production sites of all the implemented steroids with additional consideration of the corresponding 13C/12C ratios. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The applicability of programmable temperature vaporizer (PTV) solvent vent injection to the gas chromatographic (GC) determination of pesticide residues in fruits and vegetables was evaluated with the aim of miniaturizing the current multiresidue method. For that purpose 24 pesticides representing different chemical classes were initially chosen for optimisation of the large volume injection (LVI) parameters. Various parameters related to the optimum injector performance were tested for several types of packed and empty liners using both fast (at-once) and speed-controlled PTV solvent vent injection of standard solutions in ethyl acetate. In the next step, several packed and empty liners were evaluated for their suitability for pesticide multiresidue analysis. Parameters identified as optimal were then applied for PTV solvent vent injection of sample extracts prepared using the miniaturized multiresidue method to assess the long-term stability of the system. The combined use of large volume injection of 10 microl ethyl acetate extract into an empty multi-baffled or a CarboFrit packed liner using PTV injectors and GC-MS analysis enabled the detection and quantification of 124 pesticides in fruit and vegetable samples at the 0.01 mg/kg level using miniaturized reversed-phase solid-phase extraction (RP-SPE) of diluted acetone extract and clean-up on a small anion-exchange SPE column.  相似文献   

8.
Although substantial technical advances have been achieved during the past decades to extend and facilitate the analysis of growth promoters in cattle, the detection of abuse of synthetic analogs of naturally occurring hormones has remained a challenging issue. When it became clear that the exogenous origin of steroid hormones could be traced based on the 13C/12C isotope ratio of the substances, GC/C/IRMS has been successfully implemented to this aim since the end of the past century. However, due to the costly character of the instrumental setup, the susceptibility of the equipment to errors and the complex and time consuming sample preparation, this method is up until now only applied by a limited number of laboratories. In this review, the general principles as well as the practical application of GC/C/IRMS to differentiate between endogenous steroids and exogenously synthesized homologous compounds in cattle will be discussed in detail, and will be placed next to other existing and to be developed methods based on isotope ratio mass spectrometry. Finally, the link will be made with the field of sports doping, where GC/C/IRMS has been established within the World Anti-Doping Agency (WADA) approved methods as the official technique to differentiate between exogenous and endogenous steroids over the past few years.  相似文献   

9.
The application of a comprehensive gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS)-based method for stable carbon isotopes of endogenous urinary steroids is presented. The key element in sample preparation is the consecutive cleanup with high-performance liquid chromatography (HPLC) of underivatized and acetylated steroids, which allows the isolation of ten analytes (11beta-hydroxyandrosterone, 5alpha-androst-16-en-3beta-ol, pregnanediol, androsterone, etiocholanolone, testosterone, epitestosterone, 5alpha-androstane-3alpha,17beta-diol, 5beta-androstane-3alpha,17beta-diol and dehydroepiandrosterone) from a single urine specimen. These steroids are of particular importance to doping controls as they enable the sensitive and retrospective detection of steroid abuse by athletes.Depending on the biological background, the determination limit for all steroids ranges from 5 to 10 ng/mL for a 10 mL specimen. The method is validated by means of linear mixing models for each steroid, which covers repeatability and reproducibility. Specificity was further demonstrated by gas chromatography/mass spectrometry (GC/MS) for each analyte, and no influence of the sample preparation or the quantity of analyte on carbon isotope ratios was observed. In order to determine naturally occurring (13)C/(12)C ratios of all implemented steroids, a reference population of n = 61 subjects was measured to enable the calculation of reference limits for all relevant steroidal Delta values.  相似文献   

10.
The applicability of in-vial two-phase liquid-phase microextraction (LPME) in porous hollow polypropylene fiber was studied for the sample preparation of unconjugated anabolic steroids in urine. Four different anabolic steroids - metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol - were used as test compounds and methyltestosterone as an internal standard. A standard two-phase LPME method for use with liquid chromatography/mass spectrometry (LC/MS) was set up and the influence of different parameters, including the nature of organic solvent, extraction time, salting-out and temperature, on the LPME process was investigated. Taking advantage of the preliminary studies, a novel two-phase LPME method utilizing simultaneous in-fiber silylation was developed and validated for gas chromatographic/mass spectrometric (GC/MS) analysis of a danazol metabolite in urine. In all, LPME allowed a very straightforward, simple and selective way to prepare urine samples for steroid analysis, being most suitable for hydrophobic steroids. The LPME method with in-fiber derivatization for GC/MS analysis exhibited high sensitivity, repeatability and linearity and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine matrix without any other steps in sample pretreatment.  相似文献   

11.
A new derivatisation reaction applied to the analysis of steroids by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) was studied. The trimethylsilylated steroids were characterised by well-resolved chromatographic signals, no peak tailing, reproducible 13C/12C measurements (0.32 per thousand, n = 28), good signal-to-noise ratio and absolute intensity (5 x 10(-9) A, 20 ng), and a slow degradation of copper oxide pellets in the combustion furnace. In addition, two new metabolites and one precursor of testosterone in bovine have been brought into consideration and used for GC/C/IRMS measurements, namely, 3beta-hydroxy-5alpha-androstan-17-one (epiandrosterone), 3beta,17alpha-dihydroxy-5alpha-androstane, and 3beta,17alpha-dihydroxy-5-androstene. The new findings have been applied to an elimination study in bovine of testosterone metabolites after an intramuscular injection of testosterone enanthate. Significant differences (up to 4 per thousand) between testosterone metabolites and precursor were detectable at least three weeks after administration.  相似文献   

12.
A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.
Figure
Scheme of the 2D-LC/2D-GC system  相似文献   

13.
14.
A rapid method using programmed temperature vaporiser injection-low-pressure gas chromatography-high-resolution time-of-flight mass spectrometry (PTV-LP-GC-HR-TOF-MS) for the analysis of multiple pesticide residues in fruit-based baby food was developed. The fast and inexpensive buffered QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction method and "conventional" approach that employs ethyl acetate extraction followed by gel permeation chromatography (GPC) cleanup were employed for sample preparation. A PTV injector in solvent venting mode was used to reduce volume of acetonitrile and acetic acid (from the buffered QuEChERS extracts) that caused higher column bleed without their elimination. Otherwise, the time-to-digital converter would become saturated in HR-TOF-MS. For fast GC separation allowing analysis of 100 analytes within a 7 min runtime, both a high temperature programming rate and vacuum conditions in a megabore GC column were employed. The use of HR-TOF-MS allowed the unbiased identification and reliable quantification of target analytes through the application of a narrow mass window (0.02 Da) for extracting analyte ions and the availability of full spectral information even at very low levels. With only a few exceptions, the lowest calibration levels for the pesticides tested were 相似文献   

15.
PTV splitless injection cannot compete with on-column injection as far as simplicity, reliability, and accuracy of quantitative analysis is concerned. However, PTV splitless injection is attractive for trace analysis of samples containing high concentrations of involatile sample by-products. Maximum injection volumes are limited by the amount of liquid that can be retained within the PTV injector chamber and are around 20–30 μl injected at once. Solvent evaporation must be carried out in such a way that injector overflow is avoided.  相似文献   

16.
A programmed temperature vaporizer (PTV) injection technique has been recently implemented in our laboratory. In present paper its performance is compared with other GC injection techniques commonly used in trace analysis of organic contaminants. Twenty-six pesticides representing different chemical classes were selected for the study. This group comprised compounds typically subjected to discrimination in the injection port of the gas chromatograph, e.g., polar organophosphorus pesticides and thermolabile carbamates. In the first set of experiments standards in pure solvent were injected into GC systems employing different types of injection, i.e., (i) on-column, (ii) pulsed splitless, (iii) PTV solvent split, (iv) PTV splitless, and the responses of analytes were compared. Discrimination of troublesome compounds was significantly decreased with the application of PTV solvent split injection. In the second set of experiments repetitive injections of purified wheat samples were performed, with aims to evaluate the long-term stability of responses, as well as matrix effects in different stages of system contamination for each injection technique. The tolerance of the GC system to co-injected matrix components was increased in the order: on-column相似文献   

17.
Müller  S.  Efer  J.  Engewald  W. 《Chromatographia》1994,38(11-12):694-700
Chromatographia - A GC method is described for the determination of pollutants in aqueous samples by direct enrichment out of large sample volumes in a PTV injector. The vaporized water is...  相似文献   

18.
Nowadays, large-volume injection is widely used for the GC determination of trace analytes, specifically to improve detectability. The most popular injectors for large-volume injections are the programmable temperature vaporisation (PTV) injector and the cold on-column (COC) injector, where each device has its own advantages and limitations. The novel AT-column concentrating technique combines features of two other injection techniques, loop-type large-volume and vapour overflow. AT-column injection is based on solvent evaporation in an empty liner with solvent vapour discharge via the split line. Little or no optimisation is required. The only relevant parameter is the injection temperature which can easily be calculated using the equation of Antoine. As an application, AT-column injection is combined with GC-MS for the trace-level determination of labile analytes and with GC-flame ionisation detection for the analysis of high molecular weight polymer additives. In summary, AT-column is an injection technique that combines the inertness of the COC, and the flexibility and robustness of the PTV large-volume technique.  相似文献   

19.
The concept of a GC solvent evaporation technique is outlined that involves a modified Programmed Temperature Vaporizing (PTV) injector. The vapor overflow technique is intended for introducing samples in large volumes of solvent by syringe injection of strongly diluted samples or by coupled LC-GC. The liquid is introduced into a packed vaporizing chamber kept above the solvent boiling point at a pressure which is near or below ambient. The carrier gas is essentially switched off. Evaporation and discharge of the solvent vapors occurs by expansion of the vapors, driven by the solvent vapor pressure. For transferring the sapmple into the column, the carrier gas is switched on again and the vaporizing chamber heated. Compared to PTV solvent split injection, vapor overflow offers the following advantages: It automatically optimizes operational parameters, therefore facilitating its application. Losses of volatile materials are minimized by a minimal flow rate through the injector. Vapor overflow is a promising technique for transferring watercontaining eluents in coupled LC-GC since no wettability is required and leaching of pre-column surfaces is avoided.  相似文献   

20.
The administration of anabolic steroids is one of the most important issues in doping control and is detectable through a change in the carbon isotopic composition of testosterone and/or its metabolites. Gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS), however, remains a very laborious and expensive technique and substantial amounts of urine are needed to meet the sensitivity requirements of the IRMS. This can be problematic because only a limited amount of urine is available for anti‐doping analysis on a broad spectrum of substances. In this work we introduce a new type of injection that increases the sensitivity of GC‐C‐IRMS by a factor of 13 and reduces the limit of detection, simply by using solvent vent injections instead of splitless injection. This drastically reduces the amount of urine required. On top of that, by only changing the injection technique, the detection parameters of the IRMS are not affected and there is no loss in linearity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号