首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A direct comparison of some analytical properties of a three-electrode direct current plasma and an inductively coupled argon plasma in the case of pneumatic nebulization of aqueous solutions was performed. The measurements were carried out under similar conditions using a 3.4-m spectrograph. The spectra to be compared were recorded on photographic plates in the spectral range from 250 nm to 430 nm. Strong molecular band systems of OH, NH, and N 2 + were observed in the case of the direct current plasma. Detection limits for 27 spectral lines of 20 elements were determined for both sources yielding a slight advantage in favour of the inductively coupled plasma. The effect of sodium upon line and background intensities was investigated and found to be generally higher in the direct current plasma.
Ein Drei-Elektroden-Gleichstromplasma im Vergleich zu einem induktiv gekoppelten Argonplasma
  相似文献   

2.
3.
A simple rapid method for the determination of major and minor elements in silicates is reported. Powdered sample (50 mg) is treated with hydrochloric and hydrofluoric acids in a small sealed Teflon vessel. After addition of boric acid, silicon, aluminium, iron, titanium, manganese, calcium, magnesium, sodium, and potassium are determined by inductively coupled plasma emission spectrometry. The method is satisfactory for a variety of standard silicate materials.  相似文献   

4.
The quantitative determination of trace elements in nuclear samples by GDMS and ICP-MS is presented and compared. Spectral interferences, matrix effects, detection limits, precision and accuracy are discussed. Results for selected samples demonstrated that both techniques are complementary. The use of a multi-standard solution provides the most accurate results in ICP-MS, whereas in GDMS this is achieved by relative sensitivity factors (RSF) matrix matched. Nevertheless, the use of standard RSF allows a fast screening.  相似文献   

5.
The quantitative determination of trace elements in nuclear samples by GDMS and ICP-MS is presented and compared. Spectral interferences, matrix effects, detection limits, precision and accuracy are discussed. Results for selected samples demonstrated that both techniques are complementary. The use of a multi-standard solution provides the most accurate results in ICP-MS, whereas in GDMS this is achieved by relative sensitivity factors (RSF) matrix matched. Nevertheless, the use of standard RSF allows a fast screening.  相似文献   

6.
To gain an understanding of the function, toxicity and distribution of trace elements, it is necessary to determine not only the presence and concentration of the elements of interest, but also their speciation, by identifying and characterizing the compounds within which each is present. For sensitive detection of compounds containing elements of interest, inductively coupled plasma mass spectrometry (ICP-MS) is a popular method, and for identification of compounds via determination of molecular weight, electrospray ionization mass spectrometry (ESI-MS) is gaining increasing use. ICP-MS and ESI-MS, usually coupled to a separation technique such as chromatography or capillary electrophoresis, have already been applied to a large number of research problems in such diverse fields as environmental chemistry, nutritional science, and bioinorganic chemistry, but a great deal of work remains to be completed. Current areas of research to which ICP-MS and ESI-MS have been applied are discussed, and the existing instrumentation used to solve speciation problems is described.  相似文献   

7.
Inductively coupled plasma mass spectrometry (ICP-MS) has now been developed for application to stable isotope tracer investigations of several minerals/trace elements. Use of this method for such purposes requires an understanding of a number of fundamental issues: analytical chemistry performance of the method of isotopic analysis, relationship of the level of enriched isotope administered to the subject with background level of the isotope already present, the issues of cost, and finally the specific details of the biological issues to be explored.In this paper, a brief discussion of these issues is presented. As an example, the discussion is presented in relation to selected aspects of metabolism of selenium, employing the three stable isotopes74Se,77Se, and82Se in the rat as the biological model.Analytical performance of hydride generation/ICP-MS is discussed for the required analyses of selenium isotopes. It is shown that for solutions containing 10 ng/ml Se of natural isotopic composition, optimized signal/background ratios greater than 40/1 can be obtained, resulting in worst-case detection limits (ng Se) of 2 (74Se), and 0.6 (77,82Se). The precision and accuracy of isotope ratio measurements for the method used routinely in biological studies is 1%. The accuracy of the method for quantitative isotopic analysis is compared with hydride generation/atomic absorption spectrophotometry (HG/AAS). The following results are given (g Se/g or ml; mean + 1 SD,n = 3–5; first HG/ICP-MS, second HG/AAS): SRM 1577a [bovine liver] 0.697 ± 0.002 versus 0.69 ± 0.01; human blood plasma 0.098 ± 0.001 versus 0.135 ± 0.008; human red cells 0.211 ± 0.002 versus 0.216 ± 0.012; and human urine 0.0473 ± 0.0003 versus 0.0489 ± 0.0003.An experiment is described with the rat to show the feasibility of the method for studies of selenium metabolism. Rats were placed on Se-free diet for eight weeks, given their Se requirements in the drinking water in the form of76SeO 3 2– and a single-day (day 3) replacement of their water with that containing highly enriched74SeO 3 2– . Isotopic analysis of carcass and selected organs revealed a high degree of isotopic enrichment with respect to74Se during the entire eight weeks of the experiment, indicating the feasibility of this approach for detailed investigations of selenium metabolism in the rat.Presented in part at the 1989 European Winter Conference on Plasma Spectrochemistry, Reutte, Austria  相似文献   

8.
Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.  相似文献   

9.
10.
The spatial distribution and concentration of impurities in metallurgical-grade silicon (MG-Si) samples (97–99% w/w Si) were investigated by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The spatial resolution (120 μm) and low limits of detection (mg kg−1) for quality assurance of such materials were studied in detail. The volume-dependent precision and accuracy of non-matrix-matched calibration for quantification of minor elements, using NIST SRM 610 (silicate standard), indicates that LA-ICP-MS is well suited to rapid process control of such materials. Quantitative results from LA-ICP-MS were compared with previously reported literature data obtained by use of ICP-OES and rf-GD-OES. In particular, the distribution of element impurities and their relationship to their different segregation coefficients in silicon is demonstrated. Dedicated to Professor Klaus G. Heumann  相似文献   

11.
Coedo AG  Padilla I  Dorado MT 《Talanta》2005,67(1):136-143
Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO + Fe2O3 synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements.  相似文献   

12.
建立了电感耦合等离子体光谱法测定铝灰中铝含量的方法。针对铝灰样品中铝含量高,难消解的特点,研究了酸溶法和碱熔法对铝灰样品的消解方法,并对熔融时间进行了试验,确定采用碳酸钠,碳酸钾,硼酸在900℃高温下熔融20min消解铝灰样品。同时采用传统滴定法和电感耦合等离子体光谱法对实验结果进行了比对,确定测定结果的准确性。方法检出限为0.017 mg/L,测定下限为0.028 mg/L,3个样品的相对标准偏差在1.46%~3.85%之间,加标回收率在96.63%~98.40%之间。该方法样品消解完全,流程短,操作简单,快速,测定准确度高,可以满足铝灰样品中铝含量的测定。  相似文献   

13.
以三酸消解钼矿石中的铼, 不经分离富集, 用电感耦合等离子体质谱法直接测定钼矿石样品中的铼。方法检出限可达0.012μg/g , 通过对国家岩石一级标准样品的测试, 测定结果一致;对GBW07285标准样品11 次测定的相对标准偏差(RSD) 为1.13%。  相似文献   

14.
利用电感耦合等离子体原子发射光谱仪( ICP-AES)建立白云石和菱镁石中铝、钙、铁、镁、锰、磷、硅、锶的测定方法。研究了酸体系、温度及消解方式对试样消解的影响,结果表明,使用5 mL盐酸和硝酸混合酸(1:3)-0.75 mL氢氟酸-5 mL水以密闭消解的方式在150 ℃下消解白云石和菱镁石30min,并以2mL饱和硼酸络合多余的氢氟酸,可以得到澄清消解液。通过白云石和菱镁石中铝、钙、铁、镁、锰、磷、硅、锶的谱线干扰情况,选择Al 308.215 nm、Ca 318.127 nm、Fe 261.187 nm、Mg 277.983 nm、Mn 257.61 nm、P 213.618 nm、Si 251.611 nm、Sr 421.552 nm作为分析线,各元素的校准曲线在线性范围内线性关系良好,相关系数均不小于0.999。按照实验方法测定白云石和菱镁石标准物质,各元素结果的相对标准偏差 (RSD, n=6)为0.89~3.19%,测定值与认定值无显著性差异。本方法有效解决了白云石和菱镁石快速有效溶解及准确测定问题。  相似文献   

15.
A method was developed for simultaneous determination of major (Ca), minor (Mg and Sr) and trace (Ba and U) elements in biocarbonates by inductively coupled plasma mass spectrometry (ICP-MS). The method precision (RSD%) is 0.73% for Ca, 0.77% for Mg, 0.59% for Sr, 2.02% for Ba, 1.13% for U, 0.67% for Mg/Ca, 0.27% for Sr/Ca, 2.06% for Ba/Ca and 1.23% for U/Ca. The ratio precision suggests that ICP-MS is satisfactory for obtaining multi-ratio data from biocarbonates. This technique was applied to 67 continuous coral samples.  相似文献   

16.
A pulsed Nd:YAG laser operating on the fourth (266 nm) and second (532 nm) harmonics has been used to generate plasmas on the target surface in air at atmospheric pressure. The influence of wavelength on quantitative analysis of 4 minor elements in stainless steel samples (Si, Ti, Nb and Mo) was investigated. Stainless steel samples with different elemental concentrations were prepared and analyzed by laser-induced plasma spectrometry (LIPS). The effect of laser wavelength on analytical figures of merit (calibration curves, correlation coefficients, linear dynamic ranges, analytical precision, and accuracy values) was found to be negligible when internal standardization (an Fe line) and time-resolved laser-induced plasma are employed. For both wavelengths, the calibration curves presented a good linearity and an acceptable linear dynamic range in the concentration interval investigated. For the four elements studied, limits of detection lower than 150 microg g(-1) were achieved. To evaluate the influence of wavelength on precision and accuracy, a set of fifteen high-alloyed steel samples from different stages of steelmaking process have been analyzed. Finally, the long-term stability of the analytical measurements for Mo with 532 nm wavelength has been discussed. RSD values were lower than 5.3% for the elements studied.  相似文献   

17.
采用电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤中的全硼,具有测定范围宽,精密度高,测定速度快等优点,但其检出限较高,文章选择乙醇作增敏剂,降低仪器检出限,实现高中低含量样品的同时分析测定。实验发现当乙醇含量为5%时,雾化效率最佳,原子线B208.893 nm,B208.959 nm的灵敏度分别增强了21.2% 和18.7% ;采用HF-HCl-HNO3消解样品,甘露醇作保护剂,甘露醇的加入可有效解决样品消解过程中硼挥发所导致的测定结果偏低,精密度差等问题。按照本实验方法对国家标准物质及实际土壤样品进行全硼的分析测定,测定结果相对标准偏差(RSD,n=11)为0.56%~2.14%,相对误差为-2.8%~1.6%。加标回收率在 96.8%~104.6% 之间 ,可满足日常分析要求。  相似文献   

18.
Inductively coupled plasma mass spectrometry (ICP/MS) is utilized as a detector for several organotin species separated by high-performance liquid chromatography. Detection limits obtained by ICP/MS are 3 orders of magnitude lower than those obtained with inductively coupled plasma atomic emission spectrometry (ICP/AES) detection under the same chromatographic conditions. Chromatographic detection limits are higher than conventional solution nebulization for the same compound by a factor of 20. Ion-exchange chromatography yields linear response over 3 orders of magnitude, while ion pair chromatography gives a linear response of only 2 orders of magnitude as a result of poor resolution. The relative standard deviation for the injection of 20 ng of tin compounds is less than 10%.  相似文献   

19.
Slurry sampling followed by electrothermal vaporization (ETV) was used as sample introduction technique in inductively coupled plasma atomic emission spectrometry (ICP-AES) for the direct determination of trace elements in food samples. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote vaporization and the transportation of analytes. The main factors affecting the analytical signals were investigated in detail. Under optimum operating conditions, the detection limits (DL) for this method varied from 1.8 (Cu) to 215 ng/mL (Zn), while the relative standard deviations (RSD) were in the range 2.6% (Cu)-7.2% (Zn). The proposed method was successfully applied to the direct determination of trace amounts of V, Cu, Cr, Fe, Zn, and La in rice without any chemical pretreatment. The precision was evaluated by analyzing a standard reference material (tea leaves, GBW 07605) and comparing the results from this method with results obtained by pneumatic nebulization (PN) ICP-AES after the wet-chemical decomposition of the same sample.From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 3, 2005, pp. 286–290.Original English Text Copyright © 2005 by Chen.This article was submitted by the author in English.  相似文献   

20.
The widespread application of nanoparticles (NPs) in recent times has caused concern because of their effects in biological systems. Although NPs can be produced naturally, industrially synthesized NPs affect the metabolism of a given organism because of their high reactivity. The biotransformation of NPs involves different processes, including aggregation/agglomeration, and reactions with biomolecules that will be reflected in their toxicity. Several analytical techniques, including inductively coupled plasma mass spectrometry (ICP‐MS), have been used for characterizing and quantifying NPs in biological samples. In fact, in addition to providing information regarding the morphology and concentration of NPs, ICP‐MS‐based platforms, such as liquid chromatography/ICP‐MS, single‐particle ICP‐MS, field‐flow fractionation (asymmetrical flow field‐flow fractionation)‐ICP‐MS, and laser ablation‐ICP‐MS, yield elemental information about molecules. Furthermore, such information together with speciation analysis enlarges our understanding of the interaction between NPs and biological organisms. This study reports the contribution of ICP‐MS‐based platforms as a tool for evaluating NPs in distinct biological samples by providing an additional understanding of the behavior of NPs and their toxicity in these organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号