首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtain a non-Abelian version of a theory involving vector and tensor gauge fields interacting via a massive topological coupling, besides the nonminimun one. The new fact is that the non-Abelian theory is not reducible and Stuckelberg fields are introduced in order to make compatible gauge invariance, nontrivial physical degrees of freedom and the limit of the Abelian case.  相似文献   

2.
3.
In conventional gauge theory, a charged point particle is described by a representation of the gauge group. If we propagate the particle along some path, the parallel transport of the gauge connection acts on this representation. The Lagrangian density of the gauge field depends on the curvature of the connection which can be calculated from the holonomy around (infinitesimal) loops. For Abelian symmetry groups, say G=U(1), there exists a generalization, known as p-form electrodynamics, in which (p−1)-dimensional charged objects can be propagated along p-surfaces and in which the Lagrangian depends on a generalized curvature associated with (infinitesimal) closed p-surfaces. In this article, we use Lie 2-groups and ideas from higher category theory in order to formulate a discrete gauge theory which generalizes these models at the level p=2 to possibly non-Abelian symmetry groups. An important feature of our model is that it involves both parallel transports along paths and generalized transports along surfaces with a non-trivial interplay of these two types of variables. Our main result is the geometric picture, namely the assignment of non-Abelian quantities to geometrical objects in a coordinate free way. We construct the precise assignment of variables to the curves and surfaces, the generalized local symmetries and gauge invariant actions and we clarify which structures can be non-Abelian and which others are always Abelian. A discrete version of connections on non-Abelian gerbes is a special case of our construction. Even though the motivation sketched so far suggests applications mainly in string theory, the model presented here is also related to spin foam models of quantum gravity and may in addition provide some insight into the role of centre monopoles and vortices in lattice QCD.  相似文献   

4.
We argue that the quantized non-Abelian gauge theory can be obtained as the infrared limit of the corresponding classical gauge theory in a higher dimension. We show how the transformation from classical to quantum field theory emerges, and calculate Planck's constant from quantities defined in the underlying classical gauge theory.  相似文献   

5.
The renormalization-group method is applied to investigate the infrared singularities in gauge theories with Abelian or non-Abelian symmetry, involving both massive and massless fermions. In the Abelian gauge model the infrared structures of massive and massless fermion propagators and of a massive fermion form factor are found. In the non-Abelian gauge model (quantum chromodynamics) the infrared behaviour of a massless gluon propagator and a massive quark form factor is considered in the logarithmic approximation.  相似文献   

6.
本文讨论了不可易SU(2)规范场的各种规范不变物理量——电荷、对偶荷(磁荷)、电磁场以及有质量矢粒子场的表达式与关系,特别是对偶荷(磁荷)与电荷算符同位旋方向的大范围拓扑性质的关系。  相似文献   

7.
To make the gauge field theory foundation of the topological current of p-branes introduced in our previous work, we present a novel topological tensor current in SO(N) gauge field theory. This non-Abelian gauge field tensor current is the straightforward generalization of the Chern-Simons topological current of strings. By making use of the SO(N) gauge potential decomposition theory and the φ-mapping topological current theory, it is proved that the p-brane is created at every isolated zero of the Clifford vector field \(\overrightarrow{\phi }(x)\) and the charges carried by p-branes are topologically quantized and labelled by the winding number of the φ-mapping.  相似文献   

8.
The paper examines the emergence of gauge fields during the evolution of a particle with a spin that is described by a matrix Hamiltonian with n different eigenvalues. It is shown that by introducing a spin gauge field a particle with a spin can be described as a spin multiplet of scalar particles situated in a non-Abelian pure gauge (forceless) field U (n). As the result, one can create a theory of particle evolution that is gauge-invariant with regards to the group Un (1). Due to this, in the adiabatic (Abelian) approximation the spin gauge field is an analogue of n electromagnetic fields U (1) on the extended phase space of the particle. These fields are force ones, and the forces of their action enter the particle motion equations that are derived in the paper in the general form. The motion equations describe the topological spin transport, pumping, and splitting. The Berry phase is represented in this theory analogously to the Dirac phase of a particle in an electromagnetic field. Due to the analogy with the electromagnetic field, the theory becomes natural in the four-dimensional form. Besides the general theory, the article considers a number of important particular examples, both known and new.  相似文献   

9.
In this paper, a topological superfluid phase with Chern number ?? = ±1, possessing gapless edge states and non-Abelian anyonsis designed in a ?? = ±1 topological insulator proximity to ans-wave superfluid on an optical lattice with the effective gauge fieldand layer-dependent Zeeman field coupled to ultracold fermionic atoms’ pseudo spin. Wealso study its topological properties and calculate the phase stiffness by using therandom-phase-approximation approach. Finally we derive the temperature of theKosterlitz-Thouless transition by means of renormalized group theory. Owning to theexistence of non-Abelian anyons, this ?? = ±1 topological superfluid may be a possible candidate fortopological quantum computation.  相似文献   

10.
K P Sinha 《Pramana》1984,23(2):205-214
A review of some recent papers on gauge theories of weak and strong gravity is presented. For weak gravity, SL(2, C) gauge theory along with tetrad formulation is described which yields massless spin-2 gauge fields (quanta gravitons). Next a unified SL(2n,C) model is discussed along with Higgs fields. Its internal symmetry is SU(n). The free field solutions after symmetry breaking yield massless spin-1 (photons) and spin-2 (gravitons) gauge fields and also massive spin-1 and spin-2 bosons. The massive spin-2 gauge fields are responsible for short range superstrong gravity. Higgs-fermion interaction can lead to baryon and lepton number non-conservation. The relationship of strong gravity with other forces is also briefly considered.  相似文献   

11.
Necessary group theoretic conditions for all elementary gauge bosons and fermions of an arbitrary renormalizable gauge theory to lie on Regge trajectories are reviewed. It is then argued that in properly unified gauge theories all particles of a given spin lie on Regge trajectories. This then implied that a properly unified gauge theory has no local U(1) factor groups, and no massive fermion singlets. A consideration of the general pattern of Regge and radial recurrences to be expected in quantum field theories suggests that the presence or absence of spin 32 quarks and/or leptons in the TeV region will provide crucial clues to enable one to distinguish between various classes of unified, grand unified, and subconstituent models. The correct interpretation of such excited fermions will require correlation with the Higgs boson mass and possible radial and Regge excitations of the weak vector bosons.  相似文献   

12.
A dynamical non-Abelian 2-form gauge theory (with BF term) is endowed with the “scalar” and “vector” gauge symmetry transformations. In our present endeavor, we exploit the latter gauge symmetry transformations and perform the Becchi–Rouet–Stora–Tyutin (BRST) analysis of the four (3+1)-dimensional (4D) topologically massive non-Abelian 2-form gauge theory. We demonstrate the existence of some novel features that have, hitherto, not been observed in the context of BRST approach to 4D (non-)Abelian 1-form as well as Abelian 2-form and 3-form gauge theories. We comment on the differences between the novel features that emerge in the BRST analysis of the “scalar” and “vector” gauge symmetries.  相似文献   

13.
We discuss a certain class of two-dimensional quantum systems which exhibit conventional order and topological order, as well as quantum critical points separating these phases. All of the ground-state equal-time correlators of these theories are equal to correlation functions of a local two-dimensional classical model. The critical points therefore exhibit a time-independent form of conformal invariance. These theories characterize the universality classes of two-dimensional quantum dimer models and of quantum generalizations of the eight-vertex model, as well as and non-abelian gauge theories. The conformal quantum critical points are relatives of the Lifshitz points of three-dimensional anisotropic classical systems such as smectic liquid crystals. In particular, the ground-state wave functional of these quantum Lifshitz points is just the statistical (Gibbs) weight of the ordinary two-dimensional free boson, the two-dimensional Gaussian model. The full phase diagram for the quantum eight-vertex model exhibits quantum critical lines with continuously varying critical exponents separating phases with long-range order from a deconfined topologically ordered liquid phase. We show how similar ideas also apply to a well-known field theory with non-Abelian symmetry, the strong-coupling limit of 2+1-dimensional Yang–Mills gauge theory with a Chern–Simons term. The ground state of this theory is relevant for recent theories of topological quantum computation.  相似文献   

14.
The one-loop effective potential within (2+1)-dimensional topological massive gauge theory is calculated against the background of a constant non-Abelian field with allowance for quark and gluon contributions, and the results of this calculations are analyzed. The quantum-mechanical problem of quark motion in such a field is considered. Conditions are established under which this problem possesses supersymmetry properties.  相似文献   

15.
We consider the relation between higher spin gauge fields and real Kac–Moody Lie algebras. These algebras are obtained by double and triple extensions of real forms \mathfrakg0{\mathfrak{g}_0} of the finite-dimensional simple algebras \mathfrakg{\mathfrak{g}} arising in dimensional reductions of gravity and supergravity theories. Besides providing an exhaustive list of all such algebras, together with their associated involutions and restricted root diagrams, we are able to prove general properties of their spectrum of generators with respect to a decomposition of the triple extension of \mathfrakg0{\mathfrak{g}_0} under its gravity subalgebra \mathfrakgl(D,\mathbb R){\mathfrak{gl}(D,\mathbb {R})} . These results are then combined with known consistent models of higher spin gauge theory to prove that all but finitely many generators correspond to non-propagating fields and there are no higher spin fields contained in the Kac–Moody algebra.  相似文献   

16.
A semiclassical constrained Hamiltonian system which was established to study dynamical systems of matrix valued non-Abelian gauge fields is employed to formulate spin Hall effect in noncommuting coordinates at the first order in the constant noncommutativity parameter θ. The method is first illustrated by studying the Hall effect on the noncommutative plane in a gauge independent fashion. Then, the Drude model type and the Hall effect type formulations of spin Hall effect are considered in noncommuting coordinates and θ deformed spin Hall conductivities which they provide are acquired. It is shown that by adjusting θ different formulations of spin Hall conductivity are accomplished. Hence, the noncommutative theory can be envisaged as an effective theory which unifies different approaches to similar physical phenomena.  相似文献   

17.
We formulate a space-time translationT 4 gauge theory of gravity on the Minkowski space-time with appropriate choice of the Lagrangian. By comparing the energy-momentum law of this theory with that of new general relativity constructed on the Weitzenböck space-time we find that in the classical limit the gauge potentials correspond to the parallel vector fields in the Weitzenböck space-time and the gauge field equation coincides with the field equation of gravity in new general relativity in the linearized version. Thus we conclude that in the classical limit theT 4 gauge theory of gravity leads to the new general relativity.  相似文献   

18.
For a class of classical spin models in 2D satisfying a certain continuity constraint it is proven that some of their correlations do not decay exponentially. The class contains discrete and continuous spin systems with Abelian and non-Abelian symmetry groups. For the discrete models our results imply that they show either long-range order or are in a soft phase characterized by powerlike decay of correlations; for the continuous models only the second possibility exists. The continuous models include a version of the plane rotator [O(2)] model; for this model we rederive, modulo two conjectures, the Fröhlich-Spencer result on the existence of the Kosterlitz-Thouless phase in a very simple way. The proof is based on percolation-theoretic and topological arguments.  相似文献   

19.
The general second-order massive field equations for arbitrary positive integer spin in three spacetime dimensions, and their “self-dual” limit to first-order equations, are shown to be equivalent to gauge-invariant higher-derivative field equations. We recover most known equivalences for spins 1 and 2, and find some new ones. In particular, we find a non-unitary massive 3D gravity theory with a 5th order term obtained by contraction of the Ricci and Cotton tensors; this term is part of an N=2 super-invariant that includes the “extended Chern-Simons” term of 3D electrodynamics. We also find a new unitary 6th order gauge theory for “self-dual” spin 3.  相似文献   

20.
By perturbative calculations of the high-temperature ground-state axial vector current of fermion fields coupled to gauge fields, an anomalous Chern–Simons topological mass term is induced in the three-dimensional effective action. The anomaly in three dimensions appears just in the ground-state current rather than in the divergence of ground-state current. In the Abelian case, the contribution comes only from the vacuum polarization graph, whereas in the non-Abelian case, contributions come from the vacuum polarization graph and the two triangle graphs. The relation between the quantization of the Chern–Simons coefficient and the Dirac quantization condition of magnetic charge is also obtained. It implies that in a (2+1)-dimensional QED with the Chern–Simons topological mass term and a magnetic monopole with magnetic charge g present, the Chern–Simons coefficient must be also quantized, just as in the non-Abelian case. Received: 7 April 1999 / Published online: 3 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号