首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss general properties of classical string field theories with symmetric vertices in the context of deformation theory. For a given conformal background, there are many string field theories corresponding to different decomposition of moduli space of Riemann surfaces. It is shown that any classical open string field theories on a fixed conformal background are A-quasi-isomorphic to each other. This indicates that they have isomorphic moduli space of classical solutions. The minimal model theorem in A-algebras plays a key role in these results. Its natural and geometric realization on formal supermanifolds is also given. The same results hold for classical closed string field theories, whose algebraic structures are governed by L-algebras.  相似文献   

2.
Compact U(1) and SU(2) lattice gauge theories in 3 euclidean dimensions are studied by standard Monte Carlo techniques. The question of extracting reliable string tensions from these theories is examined in detail, including a comparison of the Monte Carlo Wilson loop data with weak coupling predictions and a careful error analysis: our conclusions are rather different from those of previous investigations of these theories. In the case of U(1) theory, we find that only a tiny range of β values can possibly be relevant for extracting a string tension and we are unable to convincingly demonstrate the expected exponential dependence of the string tension on β. For the SU(2) theory we are able to determine, albeit with rather large errors, a string tension from a study of Wilson loops.  相似文献   

3.
4.
《Nuclear Physics B》1988,302(3):499-524
Two - so far unrelated - constructions of four-dimensional heterotic string theories are discussed within a common framework. We show that four-dimensional heterotic string theories which are based on covariant self-dual lattices are equivalent to a wide class of asymmetric orbifolds. This equivalence provides an explicit realization of twist fields and allows the straight-forward calculation of scattering amplitudes of various massless fields. “Topological” properties of the orbifolds, like the number of fixed points, are related to group theoretical features of the covariant lattices. Two explicit examples illustrate our conclusions.  相似文献   

5.
《Nuclear Physics B》1988,311(1):191-204
Recently, we have described string theories based on N = 2 superconformal theories. It was argued that all such string theories correspond to string propagation on Calabi-Yau manifolds. We compute here the Yukawa couplings for massless particles in the representation 27 of E6 (generations), in some examples, and show that the quasi-topological result of the field-theory approximation holds exactly. This is a non-trivial quantitative agreement which further supports the geometric interpretation of these string theories, as well as giving an explicit demonstration of the quasi-topological nature of these couplings.  相似文献   

6.
Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.  相似文献   

7.
We describe a class of six-dimensional conformal field theories that possibly are related to the tensionless string theories. They have an ADE classification, but no other discrete or continuous parameters, with the A(N-1) theory arising by factoring out the collective "center of mass" degrees of freedom from N noninteracting chiral two-forms. The Hilbert space carries an irreducible representation of the same Heisenberg group that appears in the tensionless string theories, and the "Wilson surface" observables obey the same superselection rules. When compactified on a two-torus, our theories have the same behavior under S duality as N = 4 super Yang-Mills theories.  相似文献   

8.
A generalized Chan-Paton construction is presented which is analogous to the tensor product of vector bundles. To this end open string theories are considered where the space of states decomposes into sectors whose product is described by a semigroup. The cyclicity properties of the open string theory are used to prove that the relevant semigroups are direct unions of Brandt semigroups. The known classification of Brandt semigroups then implies that all such theories have the structure of a theory with Dirichlet-branes. We also describe the structure of an arbitrary orientifold group, and show that the truncation to the invariant subspace defines a consistent open string theory. Finally, we analyze the possible orientifold projections of a theory with several kinds of branes.  相似文献   

9.
《Nuclear Physics B》1997,505(3):569-624
The possible tensor constructions of open string theories are analyzed from first principles. To this end the algebraic framework of open string field theory is clarified, including the role of the homotopy associative A algebra, the odd symplectic structure, cyclicity, star conjugation, and twist. It is also shown that two string theories are off-shell equivalent if the corresponding homotopy associative algebras are homotopy equivalent in a strict sense.It is demonstrated that a homotopy associative star algebra with a compatible even bilinear form can be attached to an open string theory. If this algebra does not have a space-time interpretation, positivity and the existence of a conserved ghost number require that its cohomology is at degree zero, and that it has the structure of a direct sum of full matrix algebras. The resulting string theory is shown to be physically equivalent to a string theory with a familiar open string gauge group.  相似文献   

10.
We continue our study of the Lorentz-breaking string theories. These theories are defined as string theory with modified Hamiltonian constraint which breaks the Lorentz symmetry of target space-time. We analyze the properties of this theory in the target space-time that possesses isometry along one direction. We also derive the T-duality rules for Lorentz-breaking string theories and show that they are the same as that of Buscher’s T-duality for the relativistic strings.  相似文献   

11.
We prove the decomposition theorem for the loop homotopy Lie algebra of quantum closed string field theory and use it to show that closed string field theory is unique up to gauge transformations on a given string background and given S-matrix. For the theory of open and closed strings we use results in open-closed homotopy algebra to show that the space of inequivalent open string field theories is isomorphic to the space of classical closed string backgrounds. As a further application of the open-closed homotopy algebra, we show that string field theory is background independent and locally unique in a very precise sense. Finally, we discuss topological string theory in the framework of homotopy algebras and find a generalized correspondence between closed strings and open string field theories.  相似文献   

12.
We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z2-graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k + 2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured.  相似文献   

13.
Modular invariance has recently emerged as a powerful tool in conformal field theory. In conjunction with the representation theory of infinite dimensional Lie algebras, the study of modular invariance gave the spectrum of several families of theories. These include the minimal conformal models (Cardy and others), WZW theories which describe string propagation on group manifolds (Gepner and Witten) and parafermionic field theories (Gepner and Qiu). The minimal conformal models models were shown to be a product of two SU(2) WZW theories (Gepner). These results represent a step towards a complete classification of conformal field theories, an important goal both for the study of critical phenomena and string theory.  相似文献   

14.
《Nuclear Physics B》1996,477(3):652-674
The target space theory of the N = (2,1) heterotic string may be interpreted as a theory of gravity coupled to matter in either 1 + 1 or 2 + 1 dimensions. Among the target space theories in 1 + 1 dimensions are the bosonic, type II, and heterotic string world-sheet field theories in a physical gauge. The (2 + 1)-dimensional version describes a consistent quantum theory of supermembranes in 10 + 1 dimensions. The unifying framework for all of these vacua is a theory of (2 + 2)-dimensional self-dual geometries embedded in 10 + 2 dimensions. There are also indications that the N = (2,1) string describes the strong-coupling dynamics of compactifications of critical string theories to two dimensions, and may lead to insights about the fundamental degrees of freedom of the theory.  相似文献   

15.
16.
Some mathematical and physical aspects of superconformal string compactification in weighted projective space are discussed. In particular, we recast the path integral argument establishing the connection between Landau-Ginzburg conformal theories and Calabi-Yau string compactification in a geometric framework. We then prove that the naive expression for the vanishing of the first Chern class for a complete intersection (adopted from the smooth case) is sufficient to ensure that the resulting variety, which is generically singular, can be resolved to a smooth Calabi-Yau space. This justifies much analysis which has recently been expended on the study of Landau-Ginzburg models. Furthermore, we derive some simple formulae for the determination of the Witten index in these theories which are complimentary to those derived using semiclassical reasoning by Vafa. Finally, we also comment on the possible geometrical significance ofunorbifolded Landau-Ginzburg theories.  相似文献   

17.
We study covariant open bosonic string field theories on multiple Dp-branes by using the deformed cubic string field theory, which is equivalent to string field theory in the proper-time gauge. Constructing the Fock space representations of the three-string vertex and the four-string vertex on multiple Dp-branes, we obtain the field theoretical effective action in the zero-slope limit. On multiple D0-branes, the effective action reduces to the Banks-Fishler-Shenker-Susskind(BFSS) matrix model. We also discuss the relation between open string field theory on multiple D-instantons in the zero-slope limit and the Ishibashi-Kawai-Kitazawa-Tsuchiya(IKKT) matrix model.The covariant open string field theory on multiple Dp-branes could be useful to study the non-perturbative properties of quantum field theories in(p+1)-dimensions in the framework of the string theory. The non-zero-slope corrections may be evaluated systematically by using covariant string field theory.  相似文献   

18.
The ten dimensional string theories as well as eleven dimensional supergravity are conjectured to arise as limits of a more basic theory, traditionally dubbed M-theory. This notion is confined to the ten dimensional supersymmetric theories. String theory, however, also contains ten dimensional non-supersymmetric theories that have not been incorporated into this picture. In this note we explore the possibility of generating the low energy spectra of various non-supersymmetric heterotic string vacua from the Horava–Witten model. We argue that this can be achieved by imposing on the Horava–Witten model an invariance with respect to some extra operators which identify the orbifold fixed planes in a non-trivial way, and we demonstrate it for the E8 and SO(16)×SO(16) heterotic string vacua in ten dimensions.  相似文献   

19.
20.
D-brane charges in orientifold string theories are classified by the KR-theory of Atiyah. However, this is assuming that all O-planes have the same sign. When there are O-planes of different signs, physics demands a “KR-theory with a sign choice” which up until now has not been studied by mathematicians (with the unique exception of Moutuou, who did not have a specific application in mind). We give a definition of this theory and compute it for orientifold theories compactified on S 1 and T 2. We also explain how and why additional “twisting” is implemented. We show that our results satisfy all possible T-duality relationships for orientifold string theories on elliptic curves, which will be studied further in subsequent work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号