首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In general, the complexation and gelation behavior between biocompatible poly(ε‐caprolactone) (PCL) derivatives and α‐cyclodextrin (α‐CD) is extensively studied in water, but not in organic solvents. In this article, the complexation and gelation behavior between α‐CD and multi‐arm polymer β‐cyclodextrin‐PCL (β‐CD‐PCL) with a unique “jellyfish‐like” structure are thoroughly investigated in organic solvent N,N‐dimethylformamide and a new heat‐induced organogel is obtained. However, PCL linear polymers cannot form organogels under the same condition. The complexation is characterized by rheological measurements, DSC, XRD, and SEM. The SEM images reveal that the complexes between β‐CD‐PCL and α‐CD present a novel topological helix porous structure which is distinctly different from the lamellar structure formed by PCL linear polymers and α‐CD, suggesting the unique “jellyfish‐like” structure of β‐CD‐PCL is crucial for the formation of the organogels. This research may provide insight into constructing new supramolecular organogels and potential for designing new functional biomaterials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1598–1606  相似文献   

2.
Novel dual molecular‐ and ion‐recognition responsive poly(N‐isopropylacrylamide‐co‐benzo‐12‐crown‐4‐acrylamide) (PNB12C4) linear copolymers with benzo‐12‐crown‐4 (B12C4) as both guest and host units are prepared. The copolymers exhibit highly selective sensitivities toward γ‐cyclodextrin (γ‐CD) and Na+. The presence of γ‐CD induces the lower critical solution temperature (LCST) of PNB12C4 copolymer to shift to a higher value due to the formation of 1:1 γ‐CD/B12C4 host‐guest inclusion complexes, while Na+ causes a negative shift in LCST due to the formation of 2:1 “sandwich” B12C4/Na+ host‐guest complexes. Regardless of the complexation order, when γ‐CD and Na+ coexist with PNB12C4, competitive complexation actions of B12C4 as both guest and host units toward γ‐CD and Na+ finally form equilibrium 2:2:1 γ‐CD/B12C4/Na+ composite complexes, and the final LCST values of PNB12C4 copolymer reach almost the same level. The results provide valuable guidance for designing and applying PNB12C4‐based smart materials in various applications.

  相似文献   


3.
A novel linear poly(N‐isopropylacrylamide) (PNIPA) with β‐cylodextrin (β‐CD) moiety (PNIPA‐β‐CD) was synthesized by the conjugation of β‐CD carrying amino groups (EDA‐β‐CD) onto PNIPA with epoxy groups (P(NIPA‐co‐GMA), Mn = 3.86 × 104), and the related reaction conditions are investigated. PNIPA‐β‐CD was characterized by means of IR, NMR and UV spectroscopes, element analysis, and differential scanning calorimetry (DSC). The number‐average molecular weight (Mn) and the β‐CD content of the obtained PNIPA‐β‐CD are 4.87 × 104 and 18.8 wt %, respectively. PNIPA‐β‐CD can not only respond to temperature stimuli but also include guest molecules. Lower critical solution temperature (LCST) of aqueous PNIPA‐β‐CD solution is similar to that of PNIPA. The association constant (Ka) for PNIPA‐β‐CD with methyl orange (MO) is 2.4 × 103 L mol?1 at pH 1.4, which is comparable to that of EDA‐β‐CD (Ka = 2.9 × 103 L mol?1). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3516–3524, 2005  相似文献   

4.
A straightforward synthesis of amphiphilic β‐cyclodextrin‐poly(4‐acryloylmorpholine) (β‐CD‐PACM) polymers of controlled molecular weight, consisting of the radical polymerization of 4‐acryloylmorpholine in the presence of 6‐deoxy‐6‐mercapto‐β‐cyclodextrin (β‐CD‐SH) as chain‐transfer agent, has been established. These derivatives carry a single β‐cyclodextrin (β‐CD) moiety at one terminus and their average molecular weight is in the order of 104. Thus, their β‐CD content is ~ 10% by weight. No evidence of un‐functionalized PACM was found in the final products. The chain‐transfer constant (CT) of β‐CD‐SH was found to be 1.30 by independently determining the reaction constants of both chain‐transfer and propagation reactions. This ensures that the molecular weight, hence the β‐CD content of the polymers, does not significantly vary with conversion. These β‐CD‐PACM polymers are highly soluble in water as well as in several organic solvents such as chloroform and lower alcohols. They proved capable of solubilizing in water poorly soluble drugs such as 9‐[(2‐hydroxyethoxy)methyl]guanine (Acyclovir) and of gradually releasing them in aqueous systems. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1607–1617, 2008  相似文献   

5.
The radical polymerization of Ntert‐butyl‐N‐allylacrylamide (t‐BAA) was carried out in a dimethyl sulfoxide/H2O mixture in the presence of β‐cyclodextrin (β‐CD). The polymerization proceeded with the complete cyclization of the t‐BAA unit and yielded optically active poly(t‐BAA). The IR spectrum of the obtained polymer showed that the cyclic structure in the polymer was a five‐membered ring. The optical activity of poly(t‐BAA) increased with an increasing molar ratio of β‐CD to the t‐BAA monomer. The interaction of β‐CD with t‐BAA was confirmed by 1H NMR and 13C NMR analyses of the polymerization system. It is suggested that interaction of the t‐BAA monomer with the hydrophobic cavity of β‐CD plays an important role in the asymmetric cyclopolymerization of t‐BAA. The radical copolymerization of t‐BAA with styrene (St), methyl methacrylate, ethyl methacrylate, or benzyl methacrylate (BMA) also produced optically active copolymers with a cyclic structure from the t‐BAA unit. St and BMA carrying a phenyl group were predicted to compete with t‐BAA for interaction with β‐CD in the copolymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2098–2105, 2000  相似文献   

6.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009  相似文献   

7.
The α,ω‐end‐capped poly(2‐methyl‐2‐oxazoline) (Cn‐POXZ‐Cn) have been synthesized by a one‐pot process using cationic ring‐opening polymerization with an appropriate initiator and terminating agent. The polymers bearing different alkyl groups C12 and C18 have molecular weight in the range of 2.4 × 103 to 14 × 103 with a small polydispersity index. The solution behavior of the free chains has been analyzed in a nonselective solvent, dichloromethane, by small‐angle neutron scattering and dynamic light scattering. These amphiphilic polymers associate in water to form flower‐like micellar structures. Critical micelle concentrations, investigated by fluorescence technique, are in the range of 0.03–0.5 g L?1 and are dependent on the hydrophilic/lipophilic balance. The structural properties of the aggregates have also been investigated by viscometry. Intrinsic viscosities of these polymers are in the same range as that of the precursors poly(2‐methyl‐2‐oxazoline) (POXZ) and mono‐functionalized polymers. Large viscosity increase corresponding to intermicellar bridging was observed in the vicinity of the micelle overlap concentration. Addition of hydroxypropyl β‐cyclodextrin (HβCD) has dissociated the aggregates and the intrinsic viscosities of the HβCD‐end‐capped chains have become comparable with the ones of POXZ precursor chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2477–2485, 2010  相似文献   

8.
A novel hexa‐armed and star‐shaped polymer containing cholesterol end‐capped poly(ε‐caprolactone) arms emanating from a phosphazene core (N3P3‐(PCL‐Chol)6) was synthesized by a combination of ring‐opening polymerization and “click” chemistry techniques. For this purpose, the terminal ? OH groups of the synthesized precursor (N3P3‐(PCL‐OH)6) were converted into Chol through a series of reaction. Both N3P3‐(PCL‐OH)6 and N3P3‐(PCL‐Chol)6 were then employed in the preparation of supramolecular inclusion complexes (ICs) with β‐cyclodextrin (β‐CD). The latter formed ICs with β‐CD in higher yield. The host–guest stoichiometry (ε‐CL:β‐CD, mol:mol) in the ICs of N3P3‐(PCL‐Chol)6 was found to be 1.2. The formation of supramolecular ICs of N3P3‐(PCL‐Chol)6 with β‐CD was confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopic methods, wide‐angle X‐ray diffraction (WAXD), and thermal analysis techniques. WAXD data showed that the obtained ICs with N3P3‐(PCL‐Chol)6 had a channel‐type crystalline structure, indicating the suppression of the original crystallization of N3P3‐(PCL‐Chol)6 in β‐CD cavities. Moreover, the thermal stabilities of ICs were found to be higher than those of the free star polymer and β‐CD. Furthermore, the surface properties of N3P3‐(PCL‐Chol)6 and its ICs with β‐CD were investigated by static contact angle measurements. The obtained results proved that the wettability of N3P3‐(PCL‐Chol)6 successfully increased with the formation of its ICs with β‐CD. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3406–3420  相似文献   

9.
The inclusion of the fluorescent organic dye, ethyl 3‐(7‐hydroxy‐2‐oxo‐2H‐chromen‐3‐yl)‐3‐oxopropanoate ( 1 ) by the host β‐cyclodextrin (β‐CD), and its response toward mercuric ions (Hg2+), was studied by UV/Vis, fluorescence, and 1H NMR spectroscopic analyses, mass spectrometry and molecular modeling studies. 1H NMR measurements together with molecular modeling studies for dye 1 demonstrate that it exhibits two tautomeric forms (keto and enol); however, when the dye is included into the β‐CD cavity, the enol form predominates. Moreover, by using spectroscopic and spectrometry techniques, a 1:1 stoichiometry was determined for the complexes formed between dye 1 (enol form) and β‐CD, with a binding constant (Kb1=1.8×104 m ?1) and for the dye 1 (keto form)‐Hg2+ (Kb2=2.3×103 m ?1). Interestingly, in the presence of 1 –β‐CD complex and mercuric ions, a ternary supramolecular system (Hg– 1 –β‐CD complex) was established, with a 1:1:1 stoichiometry and a Kb3 value of 4.3×103 m ?1, with the keto form of the dye being the only one present in this assembly. The three‐component system provides a starting point for the development of novel and directed supramolecular assemblies.  相似文献   

10.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

11.
We report on the synthesis of an H‐shaped polymer bonding β‐cyclodextrin (β‐CD) at branch points and influences of attached β‐CD on physical properties. First, a poly(ethylene glycol)(PEG)‐based functional macroinitiator bearing two azidos and four chlorines at chain‐ends (PEG‐2N3(‐4Cl)) was prepared via terminal modification reactions. Then, PEG‐2N3(‐4Cl) was applied to initiate the atom transfer radical polymerization of N‐isopropylacrylamide, leading to the synthesis of an H‐shaped block polymer with PEG as the central chain and poly(N‐isopropylacrylamide) (PNIPAM) as side‐arms (PEG‐2N3(‐4PNIPAM)). Azido groups were at the branch points of the polymer. Finally, the click reaction between PEG‐2N3(‐4PNIPAM) and alkynyl monosubstituted β‐cyclodextrin (β‐CD) afforded another H‐shaped polymer with two β‐CDs bonding at the polymer branch points (PEG‐2CD(‐4PNIPAM)). The glass transition temperature (Tg) and lower critical solution temperature (LCST) of the H‐shaped polymer increased after the attachment of β‐CD. The self‐assembly and thermal responsive behaviors, as well as the encapsulation behaviors of PEG‐2CD(‐4PNIPAM) were also altered. When temperature was below the LCSTs, PEG‐2N3(‐2PNIPAM) dissolved in water molecularly, whereas PEG‐2CD(‐4PNIPAM) could self‐assemble into nano‐sized micelles. After the LCST transitions, PEG‐2N3(‐4PNIPAM) aggregated into micron‐sized unstable particles, whereas PEG‐2CD(‐4PNIPAM) transformed into PNIPAM‐cored nanomicelles. Besides, PEG‐2CD(‐4PNIPAM) can encapsulate doxorubicin below its LCST due to the formation of micelles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
This study shows that stereochemical factors largely determine the extent to which 6-(4′-t-butylphenylamino)-naphthalene-2-sulphonate, BNS and its dimer, (BNS)2, are complexed by β-cyclodextrin, βCD, and a range of linked βCD dimers. Fluorescence and 1H NMR studies, respectively, show that BNS and (BNS)2 form host–guest complexes with βCD of the stoichiometry βCD.BNS (10? 4 K 1 = 4.67 dm3 mol? 1) and βCD.BNS2 2 ?  (10? 2 K 2′ = 2.31 dm3 mol? 1), where the complexation constant K 1 = [βCD.BNS]/([βCD][BNS]) and K 2′ = [βCD. (BNS)2]/([βCD.BNS][BNS]) in aqueous phosphate buffer at pH 7.0, I = 0.10 mol dm3 at 298.2 K. (The dimerisation of BNS is characterised by 10? 2 K d = 2.65 dm3 mol? 1.) For N,N-bis((2AS,3AS)-3A-deoxy-3A-β-cyclodextrin)succinamide, 33βCD2su, N-((2AS,3AS)-3A-deoxy-3A-β-cyclodextrin)-N′-(6A-deoxy-6A-β-cyclodextrin)urea, 36βCD2su, N,N-bis(6A-deoxy-6A-β-cyclodextrin)succinamide, 66βCD2su, N-((2AS,3AS)-3A-deoxy-3A-β-cyclodextrin)-N′-(6A-deoxy-6A-β-cyclodextrin)urea, 36βCD2ur, and N,N-bis(6A-deoxy-6A-β-cyclodextrin)urea, 66βCD2ur, the analogous 10? 4 K 1 = 11.0, 101, 330, 29.6 and 435 dm3 mol? 1 and 10? 2 K 2′ = 2.56, 2.31, 2.59, 1.82 and 1.72 dm3 mol? 1, respectively. A similar variation occurs in K 1 derived by UV–vis methods. The factors causing the variations in K 1 and K 2 are discussed in conjunction with 1H ROESY NMR and molecular modelling studies.  相似文献   

13.
用氢谱、红外光谱、X-射线粉末衍射、热分析、元素分析等测试方法研究了Veronicafolin (3,5,4′-三羟基-6,7,3′-三甲氧基黄酮) 和β-环糊精 (β-CD) 的固体包合物的谱学特征。元素分析结果显示形成Veronicafolin-β-CD·20H2O包合物,其中C:39.58%, H: 5.75%,表明包合物中主客体比为1∶1。该包合类型属于AL-型。通过紫外-可见分光光度法研究了在羟丙基-β-环糊精(HP-β-CD)的存在下Veronicafolin的相溶解度曲线,测得校正曲线为y = 24148x + 0.0075 (r=0.9999),相溶解曲线为y=0.4738x-2.0×10-7 (r=0.9490),包结平衡常数Ks为4.5×106mol-1。HP-β-CD提高了黄酮醇Veronicafolin的溶解度。  相似文献   

14.
In the crystal structure of the title compound, [LiPd2Cl4(C12H12N2)2](C24F20B)·1.196CD2Cl2 or [{(Me2bipy)PdCl2}2(μ‐Li)]+·B(C6F5)4·1.196CD2Cl2 (Me2bipy is 4,4′‐di­methyl‐2,2′‐bi­pyridine), an Li+ cation is stabilized by complexation with two (Me2bipy)PdCl2 units through weak Li—Cl interactions. This compound is thus a rare example of a complex that exhibits an arrested Cl abstraction.  相似文献   

15.
The β‐diketone 3‐(4‐cyano­phenyl)­pentane‐2,4‐dione crystallizes as the enol tautomer 4‐(2‐hydroxy‐4‐oxopent‐2‐en‐3‐yl)­benzo­nitrile, C12H11NO2, (I), with an intramolecular O—H⋯O hydrogen bond [O⋯O = 2.456 (2) Å]. Reaction of (I) with copper acetate monohydrate in the presence of triethyl­amine leads to the formation of the copper(II) complexbis­[3‐(4‐cyano­phenyl)­pentane‐2,4‐dionato‐κ2O,O]copper(II), [Cu(C12H10NO2)2], (II). In the structure of (II), the Cu atom is coordinated by four β‐diketonate O atoms in a slightly distorted square‐planar geometry, with Cu—O distances in the range 1.8946 (11)–1.9092 (11) Å. The nitrile moieties in (II) make it a candidate for reaction with other metal ions to produce supramolecular structures.  相似文献   

16.
A series of 2‐amino‐7‐methoxy‐4‐aryl‐4H‐chromene‐3‐carbonitrile compounds 2 were obtained by condensation of 3‐methoxyphenol with β‐dicyanostyrenes 1 in absolute ethanol containing piperidine. The intermediate enamines 3 were prepared by compounds 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesuflonic acid (TsOH) as catalyst. The title compounds 11‐amino‐3‐methoxy‐8‐substituted‐12‐aryl‐8,9‐dihydro‐7H‐chromeno[2,3‐b]quinolin‐10(12H)‐one 4 were synthesized by cyclization of the intermediate enamines 3 in THF with K2CO3 /Cu2Cl2 as catalyst. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal structure of compound 4i was determined by single‐crystal X‐ray diffraction analysis.  相似文献   

17.
The photophysical properties of two polyrotaxanes ( PFBTh?PSβCD and PFBTh?PMeβCD ) composed of fluorene and bithiophene encapsulated into permodified β‐cyclodextrin cavities have been investigated and compared with those of the reference PFBTh . Rotaxane formation results in improvements of the thermal stability, solubility in common organic solvents, as well as better film forming ability combined with a high transparency. As expected PFBTh and its encapsulated forms absorb at wavelengths beyond 510 nm, and time‐resolved photoluminescence (PL) in solution shows a well‐define vibronic structures with a predominance of the 0‐0 transitions and an energy difference of 0.16 eV. The fluorescence lifetimes follow a monoexponential decay with a value τ = 630 ± 30 ps. Atomic force microscopy, AFM, indicated a tendency of polyrotaxanes to organize into fibers. The advancing contact angles indicated higher surface hydrophobicity and lower surface free‐energy values for polyrotaxanes compared with their unthreaded analogues. The device based on PFBTh?PSβCD: PCBM in a 1/1 w/w ratio under simulated AM 1.5G illumination at 100 mW cm?2 exhibited improved photovoltaic parameters of cells, resulted in high Voc (0.68 V), Jsc (1.65 mA cm?2), FF (31.6%), and PCE (0.35) values, compared with PFBTh or PFBTh?PMeβCD , respectively. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 460–471  相似文献   

18.
The noncovalent interactions between 4′, 6‐diamidino‐2‐phenylindole (DAPI) and sulfobutylether β‐cyclodextrin (SBE7β‐CD) are evaluated by using photochemical measurements and compared with that of native β‐CD. Contrasting recognition behavior and intriguing modulations in the photochemical behavior of DAPI were observed. In particular, a large enhancement in the fluorescence emission and excited‐state lifetime were seen upon binding to SBE7β‐CD, with the SBE7β‐CD inclusion complex being approximately 1000 times stronger than that of β‐CD. The ensuing fluorescence “turn on” was demonstrated to be responsive to chemical stimuli, such as metal ions and adamantylanmine (AD). Upon addition of Ca2+/AD, nearly quantitative dissociation of the complex was established to regenerate the free dye and result in fluorescence “turn off”. The SO3? groups are believed to be critical for the strong and selective binding of the chromophore and the stimuli‐responsive tuning. This is as an important design criterion for the optimization of host–guest properties through supramolecular association, which is relevant for drug‐delivery applications.  相似文献   

19.
New random copolymers, poly(N‐vinyl‐2‐pyrrolidone‐co‐mono‐6‐deoxy‐6‐methacrylate ethylamino‐β‐cyclodextrin) (PnvpCD) bearing pendent β‐cyclodextrin (CD) groups were synthesized. PnvpCD formed soluble graft‐like polymer complex with adamantane (AD) end‐capped poly(ε‐caprolactone) (PclAD) in their common solvent N‐methyl‐2‐pyrrolidone driven by the inclusion interactions between the CD and AD groups. The formation of the graft complex has been confirmed by viscometry, dynamic light scattering (DLS), and isothermal titration calorimeter. The graft complex self‐assembled further into noncovalently connected micelles in water, which is a selective solvent for the main chain PnvpCD. Transmission electron microscopy, DLS, and atomic force microscopy have been used to investigate the structure and morphology of the resultant micelles. A unique “multicore” structure of the micelles, in which small PclAD domains scattered within the micelles, was obtained under nonequilibrium conditions in the preparation. However, the micelles prepared in a condition close to equilibrium possess an ordinary core‐shell structure. In both cases, the core and shell are believed to be connected by the AD‐CD inclusion complexation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4267–4278, 2009  相似文献   

20.
This work reports the elusive structural evidence for the [4]pseudorotaxane of β‐cyclodextrin (β‐CD) with coffee chlorogenic acid (CGA), a conjugate of caffeic acid (CFA) and quinic acid (QNA). A single‐crystal X‐ray structure analysis of the inclusion complex β‐cyclodextrin–chlorogenic acid–water (2/2/17), 2C42H70O35·2C16H18O9·17H2O, reveals that CGA threads through β‐CD and assembles via O—H…O hydrogen bonds and parallel‐displaced π–π interactions in the twofold symmetry‐related dimer yielding a [4]pseudorotaxane, which is crystallographically observed for the first time in CD inclusion complexes. The encapsulation of the aromatic ring and C=C—C(=O)O chain in the β‐CD dimeric cavity indicates that the CFA moiety plays a determinant role in complexation. This is in agreement with the DFT‐derived relative thermodynamic stabilities of the trimodal β‐CD–CGA inclusion complexes, that is, β‐CD complexed with different CGA components: C=C—C(=O)O chain > cyclohexane ring > aromatic ring. The complexation stability is further enhanced in the dimeric β‐CD–CGA complex, with the CFA moiety totally enclosed in the β‐CD dimeric cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号