首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Redox systems composed of a diaryliodonium or a triarylsulfonium salt together with a silane bearing Si? H groups were used for the in situ generation of strong Brønsted acids at room temperature in the presence of alkyl glycidyl ether monomers. Secondary oxiranium intermediates are generated with lifetimes from minutes to hours at room temperature. These systems undergo rapid, exothermic cationic chain polymerization when the temperature is raised. Metastable monomer‐redox initiator systems were also observed to undergo frontal polymerizations when a localized heat source is applied to the sample. The application of these delayed cationic ring‐opening polymerization systems for the development of one‐component structural adhesives that undergo rapid thermosetting at low temperatures are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
In this article, a new route for the synthesis of N‐aryl heteroaromatic onium salts by the direct copper catalyzed arylation of pyridine, substituted pyridines, isoquinoline, and acridine with diaryliodonium salts is described. It was demonstrated that these N‐aryl heteroaromatic onium salts undergo facile platinum or rhodium‐catalyzed reduction by silanes bearing Si? H groups. The reduction of N‐aryl heteroaromatic onium salts generates Brønsted acids. When this redox reaction was carried out in situ in the presence of an appropriate monomer, cationic polymerization was observed. Using this approach, the cationic polymerizations of epoxides, oxetanes, 1,3,5‐trioxane, styrene, and vinyl ethers were carried out. The use of optical pyrometry to monitor the redox initiated cationic polymerizations of some representative multifunctional monomers is described. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
The ability of certain alkyl substituted epoxides to accelerate the photoinitiated cationic ring‐opening polymerizations of oxetane monomers by substantially reducing or eliminating the induction period altogether has been termed by us “kick‐starting.” In this communication, the rates of photopolymerization of several model “kick‐started” oxetane systems were quantified and compared with the analogous biscycloaliphatic epoxide monomer, 3,4‐epoxycyclohexylmethyl 3′,4′‐epoxycyclohexanecarboxylate (ERL). It has been found that the “kick‐started” systems undergo photopolymerization at rates that are at least two‐fold faster than ERL. These results suggest that “kick‐started” oxetanes could replace ERL in many applications in which high speed ultraviolet induced crosslinking photopolymerizations are carried out. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 586–593  相似文献   

4.
Simultaneous free radical and cationic photopolymerizations of mixtures of multifunctional acrylate and oxetane monomers were carried out to provide hybrid interpenetrating network polymers. The use of “kick‐started” oxetanes in which oxetane monomers are accelerated by the use of small amounts of certain highly substituted epoxides provides dual independent radical and cationic systems with similar rates of photopolymerization leading to homogeneous interpenetrating networks. The combined photopolymerizations are very rapid and afford crosslinked network films that are colorless, hard, and transparent. The networks display no indications of phase separation. The use of this technology in various applications such as coatings, 3D imaging, and for composites is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 594–601  相似文献   

5.
Diaryliodonium salts undergo facile reduction by the dialkylborane, 9‐BBN. The combination of these two reagents constitutes a redox couple that can be employed as a convenient and versatile initiator system for the cationic polymerizations of styrenic monomers, vinyl ethers and the ring‐opening polymerizations of cyclic ethers and acetals including; epoxides, oxetanes, tetrahydrofuran, and 1,3,5‐trioxane. The polymerizations of these monomers can be carried out in either neat monomer or under solution conditions. Typically, the redox cationic polymerizations of the above monomers are rapid and exothermic. Optical pyrometry (infrared thermography) was employed as a convenient method with which to monitor and optimize the aforementioned redox initiated cationic polymerizations. Studies of the effects of variations in the structure and concentrations of the diaryliodonium salt and 9‐BBN on the polymerizations of various monomers were carried out. A mechanism for the redox cationic initiation of the polymerizations was proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5639–5651, 2009  相似文献   

6.
A kinetic study was conducted of the independent photoinitiated cationic polymerization of a number of epoxide monomers and mixtures of these monomers with N‐vinylcarbazole. The results show that these two different classes of monomers undergo complex synergistic interactions with one another during polymerization. It was demonstrated that N‐vinylcarbazole as well as other carbazoles are efficient photosensitizers for the photolysis of both diaryliodonium and triarylsulfonium salt photoinitiators. In the presence of large amounts of N‐vinylcarbazole, the rates of the cationic ring‐opening photopolymerization of epoxides are markedly accelerated. This effect has been ascribed to a photoinitiated free‐radical chain reaction that results in the oxidation of monomeric and polymeric N‐vinylcarbazole radicals by the onium salt photoinitiators to generate cations. These cations can initiate the ring‐opening polymerization of the epoxides, leading to the production of copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3697–3709, 2000  相似文献   

7.
A series of epoxy‐functional telechelic oligomers containing oxetane end groups have been synthesized. The precursor monomer, extracted from outer Birch bark, was first polymerized through enzyme‐catalyzed esterification to form oligomers having epoxy and/or oxetane groups in the structures. The oligoesters were subsequently crosslinked through cationic polymerization either by epoxy or oxetane homopolymerization or copolymerization when both functionalities were present. A study of the polymerizations of the resins was performed “in situ” using real‐time Fourier transform infrared spectroscopy revealing a preferred copolymerization when compared with the homopolymerization. By tailoring the different structures, it was possible to control the final mechanical properties of the networks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2258–2266  相似文献   

8.
A novel catalytic method for carrying out the cationic polymerizations has been developed based on a redox initiator system in which the reducing component is delivered to the reaction mixture in the vapor state. The redox couple consists of a diaryliodonium salt that is dissolved in the monomer and a noble metal catalyst is added. The silane reducing agent is introduced to the reaction mixture in the vapor state using air as the carrier gas. Reduction of the diaryliodonium salt by the silane results in the liberation of a Brønsted superacid that initiates cationic polymerizations. A study of the effects of variations in the structures of the diaryliodonium salt, the silane, and the type of noble metal catalyst was carried out. In principle, the initiator system is applicable to all types of cationically polymerizable monomers and oligomers including: the ring‐opening polymerizations of such heterocyclic monomers as epoxides and oxetanes and, in addition, the polymerization of vinyl ether monomers such as vinyl ethers. The use of this initiator system for carrying out commercially attractive cross‐linking polymerizations for coatings, composites, and encapsulations is discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1825–1835, 2009  相似文献   

9.
This study explored the abilities of 1‐(9‐anthrylmethyloxy)‐2‐pyridone and related compounds, which absorb long‐wavelength light (>350 nm), to photochemically initiate radical and cationic polymerizations. It was found that the irradiation of the title compounds initiates the radical polymerization of styrene whereas the cationic polymerization of oxetane proceeds in the presence of these photoinitiators to a negligible extent. The behavior of 9‐anthrylmethyloxyl and amidyl radicals in the photopolymerization process of styrene was discussed based on 1H NMR, UV, and fluorescence spectral data. In addition, the photoinitiation ability of the anthrylmethyloxyl end group was also investigated by using its model compound. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2859–2865, 2004  相似文献   

10.
The cyclometalated complex [RuII(o‐C6H4‐py)(MeCN)4]PF6 ( 1 ) with a σ‐Ru? C bond and four substitutionally labile acetonitrile ligands mediates radical polymerization of different vinyl monomers, viz. n‐butyl acrylate, methyl methacrylate, and styrene, initiated by three alkyl bromides: ethyl 2‐bromoisobutyrate, methyl 2‐bromopropionate, and 1‐phenylethyl bromide. The polymerization requires the presence of Al(OiPr)3 and occurs uncontrollably as a conventional radical process. The variation of the molar ratio of the components of the reaction mixture, such as initiator, Al(OiPr)3 and catalyst, affected the polymerization rates and the molecular weights but did not improve the control. A certain level of control has been achieved by adding 0.5 eq of SnCl2 as a reducing agent. Tin(II) chloride decreased the rate of polymerization and simultaneously the molecular weights became conversion‐dependent and the polydispersities were also narrowed. Remarkably, the level of control was radically improved in the presence of excess of the poorly soluble catalyst ( 1 ), when the added amount of ( 1 ) was not soluble any more, i.e., under heterogeneous conditions, the system became adjustable and the living polymerization of all three monomers was finally achieved. Possible mechanisms of the ( 1 )‐catalyzed polymerization are discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4193–4204, 2008  相似文献   

11.
Studies of the onium salt photoinitiated cationic ring‐opening polymerizations of various 3,3‐disubstituted oxetane monomers have been conducted with real‐time infrared spectroscopy and optical pyrometry. The polymerizations of these monomers are typified by an extended induction period that has been attributed to the presence of a long‐lived tertiary oxonium ion intermediate formed by the reaction of the initially formed secondary oxonium ion with the cyclic ether monomer. Because the extended induction period in the photopolymerization of these monomers renders oxetane monomers of limited value for many applications, methods have been sought for its minimization or elimination. Three general methods have been found effective in markedly shortening the induction period: (1) carrying out the photopolymerizations at higher temperatures, (2) copolymerizing with more reactive epoxide monomers, and (3) using free‐radical photoinitiators as synergists. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3205–3220, 2005  相似文献   

12.
Abstract

A series of silicon-containing multifunctional oxetane monomers has been prepared and characterized. These monomers were compared among themselves and with other oxetane monomers with respect to their reactivity in photoinitiated cationic polymerization.  相似文献   

13.
The bicyclic amidinium iodide effectively catalyzed the reaction of carbon dioxide and the epoxy‐containing oxetane under ordinary pressure and mild conditions with high chemoselectivity to give the corresponding oxetane monomer containing five‐membered cyclic carbonate quantitatively. The cationic ring‐opening polymerization of the obtained monomer by boron trifluoride diethyl ether proceeded to give linear polyoxetane bearing five‐membered cyclic carbonate pendant group in high yield. The molecular weight of the polyoxetane was higher than that of polyepoxide obtained by the cationic ring‐opening polymerization of epoxide monomer containing five‐membered cyclic carbonate. The cyclic carbonate functional crosslinked polyoxetanes were also synthesized by the cationic ring‐opening copolymerization of cyclic carbonate having oxetane and commercially available bisoxetane monomers. Analyses of the resulting polyoxetanes were performed by proton nuclear magnetic resonance, size exclusion chromatography, thermogravimetric analysis, and differential scanning calorimetry. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2606–2615  相似文献   

14.
A series of difunctional silicon‐containing monomers were prepared with a novel method consisting of the monohydrosilation of an α,ω‐difunctional Si? H‐terminated siloxane with a vinyl‐functional epoxide or oxetane followed by the dehydrodimerization of the resulting Si? H‐functional intermediate. This method used simple, readily available starting materials and could be conducted as a streamlined one‐pot, two‐step synthesis. This novel method was also applied to the synthesis of several epoxy–silicone oligomers. The reactivities of these new monomers and oligomers were examined with Fourier transform real‐time infrared spectroscopy and optical pyrometry. Those monomers containing epoxycyclohexyl groups displayed excellent reactivity in cationic ring‐opening polymerization in the presence of lipophilic onium salt photoinitiators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3056–3073, 2003  相似文献   

15.
Graft polymerization initiated by diperiodatocuprate(III) complex (Cu(III)) initiator was found to be an effective and convenient method for graft polymerization of vinyl monomers onto macroporous polyacrylamide gels, the so‐called cryogels (pAAm‐cryogels). The effect of time, temperature, monomer and initiator concentration during the graft polymerization in aqueous and aqueous‐organic media was studied. The graft polymerization of water‐soluble monomers as [2‐(methacryloyloxy)ethyl]‐trimethylammonium chloride, 2‐hydroxyethyl methacrylate, N‐isopropylacrylamide, and N,N‐dimethylacrylamide proceeds with higher grafting yield in aqueous medium, as compared with that in aqueous‐organic media. Graft polymerization in aqueous‐organic media such as water–DMSO solutions allows grafting of water‐insoluble monomers such as glycidyl methacrylate and Ntert‐butylacrylamide with high grafting degrees of 100 and 410%, respectively. It was found that the deposition of initiator on the pore surface of cryogels promoted graft polymerization by facilitating the formation of the redox couple Cu(III)‐acrylamide group. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1952–1963, 2006  相似文献   

16.
Stimuli‐responsive gradient copolymers, composed of various monomers, were synthesized by living cationic polymerization in the presence of base. The monomers included thermosensitive 2‐ethoxyethyl vinyl ether (EOVE) and 2‐methoxyethyl vinyl ether (MOVE), hydrophobic isobutyl vinyl ether (IBVE) and 2‐phenoxyethyl vinyl ether (PhOVE), crystalline octadecyl vinyl ether (ODVE), and hydrophilic 2‐hydroxyethyl vinyl ether (HOVE). The synthesis of gradient copolymers was conducted using a semibatch reaction method. Living cationic polymerization of the first monomer was initiated using a conventional syringe technique, followed by an immediate and continuous addition of a second monomer using a syringe pump at regulated feed rates. This simple method permitted precise control of the sequence distribution of gradient copolymers, even for a pair of monomers with very different relative monomer reactivities. The stimuli‐responsive gradient, block and random copolymers exhibited different self‐association behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6444–6454, 2008  相似文献   

17.
The cationic photopolymerization of oxetane‐based systems containing silicon monomers was investigated. For this purpose, three new silicon‐containing oxetane monomers were synthesized through a simple and straightforward synthetic method. The silicon‐containing monomers were added to a typical oxetane resin, 3,3′‐[oxydi(methylene)]bis(3‐ethyloxetane), in concentrations of 1–5 wt %. They exploited a certain surface tension effect without affecting the rate of polymerization. Enrichment only on the air side was achieved, which induced hydrophobicity in the photocured films, depending on the monomer structure and concentration. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1415–1420, 2004  相似文献   

18.
Abstract

Seven novel difunctional oxetane monomers have been prepared and characterized using standard spectroscopic techniques. The photoinitiated cationic polymerization of these seven monomers was carried out and their reactivity compared to a typical diepoxide monomer. In these studies the reactivities of the various oxetane monomers were evaluated and compared by three different techniques: gel time measurements, differential scanning photocalorimetry, and real time infrared spectroscopy. It was observed that the difunctional oxetanes are generally more reactive than their structurally similar epoxide counterparts in photoinitiated cationic polymerization.  相似文献   

19.
Limonene 1,2‐oxide (LMO) and α‐pinene oxide (α‐PO) are two high reactivity biorenewable monomers that undergo facile photoinitiated cationic ring‐opening polymerizations using both diaryliodonium salt and triarylsufonium salt photoinitiators. Comparative studies showed that α‐PO is more reactive than LMO, and this is because it undergoes a simultaneous double ring‐opening reaction involving both the epoxide group and the cyclobutane ring. It was also observed that α‐PO also undergoes more undesirable side reactions than LMO. The greatest utility of these two monomers is projected to be as reactive diluents in crosslinking photocopolymerizations with multifunctional epoxide and oxetane monomers. Prototype copolymerization studies with several difunctional monomers showed that LMO and α‐PO were effective in increasing the reaction rates and shortening the induction periods of photopolymerizations of these monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Well‐defined high oil‐absorption resin was successfully prepared via living radical polymerization on surface of polystyrene resin‐supported N‐chlorosulfonamide group utilizing methyl methacrylate and butyl methacrylate as monomers, ferric trichloride/iminodiacetic acid (FeCl3/IDA) as catalyst system, pentaerythritol tetraacrylate as crosslinker, and L ‐ascorbic acid as reducing agent. The polymerization proceeded in a “living” polymerization manner as indicated by linearity kinetic plot of the polymerization. Effects of crosslinker, catalyst, macroinitiator, reducing agent on polymerization and absorption property were discussed in detail. The chemical structure of sorbent was determined by FTIR spectrometry. The oil‐absorption resin shows a toluene absorption capacity of 21 g g?1. The adsorption of oil behaves as pseudo‐first‐order kinetic model rather than pseudo‐second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号